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ABSTRACT 
 
Cancer immunotherapy (passive or active) involves treatments which promote the 
ability of the immune system to fight tumor cells. Several types of immunotherapeutic 
agents, such as monoclonal antibodies, immune checkpoint inhibitors, non-specific 
immunomodulatory agents, and cancer vaccines are currently under intensive 
investigation in preclinical and clinical trials. Cancer vaccines induce permanent 
activation of the immune system and may be considered the most promising method for 
cancer treatment, especially in combination with other agents of passive immunotherapy. 
Among various approaches to cancer vaccines, whole tumor cell vaccines have been 
attracting attention for several years. Despite their low to moderate clinical effects, these 
vaccines have numerous advantages. Their ability to generate immune responses against 
tumor-associated antigens reduces the possibility for tumor cells to escape and 
facilitates the development of “off-the-shelf” allogeneic tumor vaccines. Understanding 
the reciprocal interactions between tumor cells and leukocytes is a key to harness the 
full potential of whole cell vaccination. Cytokines are considered as potent 
immunomodulatory molecules which behave as adjuvants in whole tumor cell vaccines. 
Improved mechanistic understanding of key cytokines in tumor immunity will serve as a 
resource for rational design of whole cell cancer vaccines. Although there are several 
reports about the use of different immunostimulatory cytokines as adjuvants, interleukin 
(IL)-12 appears to have superior effects compared to other cytokines. This review 
describes the effects of IL-12 compared to other immunomodulatory cytokines, such as 
IL-2 and IL-15, and highlights its application in whole cell tumor vaccination. 
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INTRODUCTION 
 
Despite the outstanding progress in the field of cancer therapy, cancer remains the 
second cause of death worldwide after cardiovascular disorders. While cancer affects 
people of all ages, the risk increases by age (1). Current cancer treatment modalities, 
including surgery, radiotherapy, and chemotherapy, are associated with various adverse 
effects. In fact, due to their lack of specificity for tumors, these treatments may fail to 
eliminate residual and micro-metastatic tumor cells (e.g. cancer stem cells) and exert 
severe negative effects on normal cells (2). 
During the last decades, several attempts have been made to develop different 
therapeutic strategies, such as immunotherapy, to induce potent immune responses 
against cancer cells (3-8). At least two different approaches, including passive and 
active immunity, fall into the definition of immunotherapy. Passive immunotherapy, 
involving the adoptive transfer of immune effectors, is rapid but does not induce long-
lived immunity (9). Monoclonal antibodies (mAbs) that disrupt tumor cells by different 
mechanisms are the most widely applied passive immunotherapies. The mAbs are 
associated with different success rates and some have been approved by the US Food 
and Drug Administration (FDA) for cancer treatment (4). Cetuximab and trastuzumab 
(anti-epidermal growth factor receptors HER-1 and HER-2, respectively), bevacizumab 
(anti-vascular endothelial growth factor), tremelimumab and ipilimumab (anti-cytotoxic 
T-lymphocyte-associated protein 4), and rituximab and of atumumab (anti-CD20) are 
among the several therapeutic mAbs for targeting tumor cells in different cancers (10-
14).  
 
Table 1. Current methods for cancer immunotherapy using cytokines. 
 

Type of 
adjuvant Examples Malignancy 

Clinical 
stage 

Clinical  trial 
no: 

IL-2 

Aldesleukin (IL-2) Renal cancer and melanoma 2 NCT01160445 

Allogeneic Large Multivalent Immunogen 
(LMI) Vaccine and IL-2 

Metastatic Breast Cancer 2 NCT00784524 

Autologous Tumor-Infiltrating 
Lymphocytes (TILs) and IL-2 

primary peritoneal cancer 1 NCT01883297 

B7-1 Gene-Modified Autologous Tumor 
Cell Vaccine and Systemic IL-2 

Renal Cell Carcinoma 2 NCT00031564 

Natural Killer Cells Plus IL-2 Melanoma or Kidney Cancer 2 NCT00328861 

IL-2 Kidney Cancer 2 NCT01702909 
Aldesleukin (IL-2) Breast Cancer 1 NCT00027807 

IL-2 and CD40 Ligand and Plasmid Gene 
Modified Autologous Tumor Cells 

B-CLL 1 NCT00078520 

CD40 Ligand &IL-2 Gene Modified 
Tumor Vaccine Modified Autologous Skin 
Fibroblasts and Tumor Cells 

Acute Leukemia 1 NCT00058799 

Aerosol IL-2 Pulmonary Metastases 1/2 NCT01590069 
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Type of 
adjuvant 

Examples Malignancy 
Clinical 
stage 

Clinical  trial 
no: 
 

IL-12 

DC/Tumor Fusions and IL-12 Breast Cancer 1/2 NCT00622401 

PSMA Peptide-Pulsed Autologous PBMC 
Plus rhIL-12 

Metastatic Prostate Cancer 2 NCT00015977 

rIL-12 Ovarian Cancer 2 NCT00016289 

rhIL-12 in combination with rhIL-2 
Breast, Lung and  kidney  
Cancer 

1 NCT00005655 

IL-12 in Combination With Paclitaxel Plus 
Herceptin 

Breast Cancer 1 NCT00028535 

rhIL-12 Solid Tumors 1 NCT00003107 

Intratumoral Delivery of Plasmid IL-12 
Electroporation 

Breast Cancer 1 NCT02531425 

rIL-12 Breast Cancer 2 NCT00004893 
rIL-12 Cervixcancer 2 NCT00003017
rIL-12 Multiple Myeloma 2 NCT00003149 

Adenoviral Vector Delivery of The IL-12 
Gene 

Prostate Cancer 1 NCT00406939 

Adenovirus- Mediated IL-12 Gene 
Transduction 

Prostate Cancer 1 NCT00110526 

Adenoviral Vector Delivery Of The 
Human IL-12

Liver Metastases 1 NCT00072098 

IL-12 gene  Skin  Cancer 1 NCT00028652 

Plasmid IL-12 Electroporation Melanoma 2 NCT01502293 

 

Type of 
adjuvant 

Examples Malignancy 
Clinical 
stage 

Clinical  trial 
no: 

IL-15 

Recombinant Human IL-15 (rhIL-15) 

Melanoma, Kidney Cancer, 
Non-small Cell Lung Cancer, 
or Squamous Cell Head and 
Neck Cancer 

1 NCT01727076 

Recombinant Human IL-15 (rhIL-15) 
Melanoma and Metastatic 
Renal Cell Cancer 

1 NCT01021059 

Recombinant Human hetIL-15 (IL15/sIL-
15Ra) 

Metastatic Cancers 1 NCT02452268 

ALT-803 ( a Novel Recombinant IL-15) 
solid tumors: melanoma, 
renal cell, non-small cell lung 

1 NCT01946789 

HaploidenticalIL-15 stimulated NK cells Solid Tumours 1/2 NCT01337544 

NK Cell Infusion With IL-15 
Acute Myelogenous 
Leukemia (AML) 

1 NCT01385423 

MT2014-25: Haplo NK With IL-15 
Acute Myelogenous 
Leukemia (AML) 

2 NCT02395822 

IL15-DC Vaccine Melanoma 1/2 NCT01189383 

ALT-803 ( a Novel Recombinant IL-15 
B Cell Non-Hodgkin 
Lymphoma 

1/2 NCT02384954 

ALT-803 ( a Novel Recombinant IL-15 Multiple Myeloma 1/2 NCT02099539 

*clinical trials.gov identifier 
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Active immunotherapy (tumor vaccines), on the other hand, provides long-term 
immunity and memory against tumor cells (Table 1)(15).  
Vaccination is one of the most investigated topics in cancer immunotherapy. Several 
preclinical and clinical trials have investigated a variety of vaccines, such as purified 
antigens, immunodominant peptides, naked DNA encoding tumor-specific antigens 
(TSAs) or tumor-associated antigens (TAAs), recombinant viruses encoding tumor 
antigens, and whole tumor cells, as candidates in cancer immunotherapy (7, 16, 17).  
Whole tumor cells usually express all relevant TSAs and TAAs, including those 
identified and unidentified for simultaneous priming of CD8+ and CD4+ T cells, and can 
stimulate specific immune responses. However, most tumors have no naturally potent 
immunogenicity due to immune-editing, a process that allows tumor cells to evolve 
during continuous interactions with the host immune system and eventually results in 
tumor escape from the immune surveillance phenomenon (18). Therefore, improving 
the immunogenicity of tumor cells is very important. Several studies have reported 
genetically modified or transduced tumor cells, that express costimulatory molecules or 
secrete activating cytokines, to enhance tumor immunogenicity and induce anti-tumor 
immune responses (19). 
Moreover, in addition to poor immunogenicity, tumor vaccines may suppress immune 
responses and prevent appropriate immune responses through the secretion of 
immunosuppressive cytokines such as interleukin-10 (IL-10) and transforming growth 
factor-β (TGF-β) which induce differentiation of regulatory T cells (Tregs) and inhibit 
the maturation of dendritic cells (DCs). Thus, the use of proper immune costimulatory 
agents as adjuvants would be necessary in overcoming the immune evasion mechanisms 
(20, 21). 
Despite their potential toxicities, cytokines, which are potent immunomodulatory agents, 
can be used as adjuvants with whole tumor cell vaccines. Among various 
immunostimulatory cytokines administered as adjuvants, IL-12 has been shown to have 
more potent effects when used with whole tumor cell vaccines (22). This manuscript 
reviews recent findings regarding the superiority of IL-12 over IL-2 and IL-15 and 
highlights its application in whole tumor cell vaccination. 
 
Adjuvant Armed or Naked Whole Tumor Cell Vaccines 
 
It is known that cell-mediated cytotoxicity, particularly by cytotoxic T lymphocytes 
(CTL), plays a major role in controlling tumor cell growth. The T cell receptor (TCR) 
on T lymphocytes recognizes peptides (linear epitopes) derived from tumor antigens on 
the surface of tumor cells or on the professional antigen-presenting cells (APCs) (23-26). 
A benefit of vaccination with whole tumor cells is that several TAAs or TSAs are 
simultaneously delivered. As a result, the need to predetermine which antigens are the 
most immunogenic to the host immune system is eliminated. Furthermore, this kind of 
vaccination can stimulate the immune response through both direct tumor-antigen 
presentation by tumor cells through major histocompatibility complex (MHC) class I 
molecules to CD8+ T cells as well as prolonged release of tumor antigens by APCs on 
MHC class II molecules to CD4+ T cells (7, 27-30). 
Several mechanisms are involved in the immunosuppression in cancer and the degree of 
immunosuppression depends on several parameters such as cancer type, tumor stage, 
and dose of immunosuppressive chemotherapies. Unresponsiveness to tumor treatments 
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may be specifically limited to tumor antigens or may be due to a more generalized 
immune defect. Several tumor cell types are known to down-regulate or mutate their 
MHC molecules and/or TAAs/TSAs either initially or during clonal evolution. This 
process impairs their ability to efficiently present tumor-derived peptides to tumor-
infiltrating T lymphocytes (31-34). 
When antigen-specific stimuli are delivered to the TCR, a second set of costimulatory 
signals is necessary to induce an effective immune response. Optimally, these antigen 
nonspecific costimulatory signals are delivered by professional APCs. B7 family 
members, such as B7.1 (CD80) and B7.2 (CD86) molecules, on the APCs bind to their 
cognate ligand, CD28, on the responding T cell. Some adhesion molecules such as 
intracellular adhesion molecules (ICAMs) and leukocyte function-associated antigens 
(LFAs) may also contribute to T cell activation. The main function of costimulatory and 
adhesion molecules is to stabilize the relationship between the TCR and the MHC-
peptide complex to produce a tight immune contact and thus provide nceessary signals 
for T cells activation. Failure to deliver costimulatory signals in a timely fashion after 
TCR engagement renders the T cells anergic rather than activated (35-37). 
Moreover, growing evidence, suggest that CD8+ lymphocytes in patients with cancer 
(such as hematologic malignancies) are unresponsive to relevant tumor antigens because 
tumor cells express MHC class I molecules without the expression of costimulatory 
molecules such as B7 family (38-40). Therefore, although whole tumor cell vaccines 
can simultaneously deliver many TAAs/TSAs (known and unknown), the direct 
presentation pathways of tumor antigens to T lymphocytes may be inaccessible due to 
the mentioned reasons. The effective way for the immune system to deal with this 
problem is hence to use indirect antigen presentation through professional APCs 
pathway. In fact, unless APCs, such as DCs, are properly licensed to initiate effector T 
cell responses, whole tumor cell vaccination may have a tolerization effect (41). 
Tumor cells can secrete inhibitors, such as TGF-β, prostaglandins (PGs), IL-10, and 
vascular endothelial growth factor, which can inhibit DCs differentiation, maturation, 
trafficking, and antigen presentation (42-44). Therefore, since whole tumor cell vaccines 
may not have stimulatory effects, other adjuvants should be used for immunostimulation. 
Preclinical studies have shown that T cells from mice vaccinated with unmodified tumor 
cells were able to recognize and lyse tumor cells that were used to vaccinate the animal. 
In contrast, T cells from mice vaccinated with granulocyte-macrophage colony-
stimulating factor (GM-CSF) plus modified tumor cells were onlyable to recognize 
tumor cells (45). 
Among various adjuvants, cytokines are biologic immunomodulators that are naturally 
produced by numerous cell types. Cytokines are small proteins with several activities. 
They can both enhance and attenuate the immune response. The balance of their 
immune stimulatory and inhibitory properties is critical for host immunity against 
malignant cells. Nevertheless, cytokine networks are complex and many cytokines are 
currently being investigated for cancer immunotherapy. IL-2, IL-15, and IL-12 have 
been well characterized and are still under evaluation by several preclinical and clinical 
trials (46, 47). 
 
IL-2 and IL-15 as T Cell Growth Factors 
 
Since its first characterization as a T cell growth factor in the 1970s, the 
immunomodulatory effects of IL-2 have been widely studied. All members of IL-
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As mentioned earlier, IL-2 has been approved for the treatment of both metastatic RCC 
and malignant melanoma. It inhibits tumor cell activity through the expansion of 
lymphocytes and increases the effector functions of lymphocytes. Nevertheless, this 
interleukin cannot effectively inhibit tumor cell growth for two possible reasons. First, 
the CTLs produced in the presence of IL-2 might confuse tumor cells with other CTLs 
and initiate activation-induced cell death (AICD). On the other hand, IL-2-dependent 
Tregs may also inhibit the required immune response. In contrast, IL-15may be a more 
effective alternative for cancer treatment as it activates T and NK cells, inhibits AICD, 
and promotes the activation of memory CD8+ T cells (62). IL-15 was found to prevent 
tumor growth and eliminate syngeneic MC38 colon carcinoma cells in transgenic mice. 
However, it failed to produce similar effects in the wild type mice which received 
intravenous infusion of carcinoma cells, i.e. the animals died due to pulmonary 
metastases after 40 days (97). 
Previous studies have also assessed the role of IL-15 trans-presentation to IL-15Rα in 
the therapeutic effects of IL-15. While the wild type mice administered with unmodified 
MC38 cells died in 40 days, animals which received IL-15Rα-transfected tumor cells 
had normal endogenous IL-15 levels and did not develop the tumor. It is believed that 
the trans-presentation of IL-15 to NK cells through the binding of IL-15Rα (existing on 
tumor cells) to circulating IL-15 promoted tumor cell lysis in the second group of mice 
(63, 64). However, a number of studies have rejected the anti-tumor effects of IL-15 (65, 
66). Differences in the studied tumor types and applied experimental designs might 
have been responsible for such inconsistencies. 
Various tumor types adopt different evasion strategies including Treg induction, T-cell 
anergy induction, blockage of the immune response to TAAs through the use of 
immunosuppressive factors, and immune tolerance to TAAs. Consequently, a major 
challenge in the development of efficient tumor immunotherapy approaches is to 
overcome the unresponsiveness of lymphocytes of cancer patients to TAAs. Fortunately, 
in the presence of adequate levels of IL-15, T effectors cells develop resistance against 
the immunosuppressive effects of Tregs. As a result, CD8+ T cells will regain their 
responsiveness to tumor cells and tolerance to TAAs will be eliminated. Such effects 
have not been reported following the administration of IL-2 (67, 68). 
Several strategies have been employed to increase the anti-tumor properties of IL-15. 
Simultaneous application of IL-15 andIL-21 has been suggested to have synergistic 
effects on memory CD8+ T cells and Tregs expansion. This combination can boost the 
level of interferon gamma (IFN-γ) produced by NK and T cells and enhance the 
cytotoxicity of these lymphocytes. The majority (80%) of mice injected with plasmid-
encoded IL-15 and IL-21 showed an enhanced anti-tumor immune response. Moreover, 
lymphomas were thoroughly regressed in the mentioned group of mice. Combinations 
of IL-15 and other cytokines, such as IL-7and IL-12, have also been found to have 
desirable anti-tumor properties (69, 70). 
On the contrary, the role of IL-15in the development of some types of leukemia and 
solid tumors, inhibition of tumor cell apoptosis, promotion of tumor cell migration, 
survival, and proliferation has been reported. Furthermore, the role of IL-15 in 
enhancement of epithelial-mesenchymal transition (EMT) and tumor invasion, 
metastasis, and angiogenesis has also been noted (71-73). Therefore, before the 
administration of any tumor immunotherapy method with IL-15, thorough in-vitro 
examinations have to be performed to determine the exact effects of the proposed 
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method on target tumor cells. Moreover, due to their genetic instability, tumor cells may 
show higher rates of mutation, stop the expression of particular genes, or start to express 
different genes. Hence, cytokines (e.g. IL-2 and IL-15) which are expected to stimulate 
the growth, migration, or survival of normal cells, including immune cells, may 
mistakenly produce similar effects on specific tumor cells. This can be the case even 
when the original normal cells do not respond to the administered cytokine. IL-15 acts 
as a T cell proliferation cytokine as well as an adjuvant therapeutic agent in B cell 
lymphoma to potentiate antibody-dependent cell-mediated cytotoxicity (ADCC) 
mediated by Rituximab activity (74). 
 
IL-12 Directs the Immune Response to Th1 
 
As a heterodimeric cytokine, IL-12 contains two disulfide-linked subunits, namely p35 
and p40, which form a bioactive protein called IL-12 p70 (75). This protein is produced 
by activated antigen-presenting cells including DCs, monocytes, neutrophils, and 
macrophages (5, 76, 77). In contrast, the IL-12-p40/p40 homodimeris mainly involved 
in the competitive suppression of IL-12-p70 (78). IL-12 receptor comprises two amino 
acid chains, known as IL-12Rβ1 and IL-12Rβ2. Constitutive or inducible expression of 
this receptor occurs in various immune cells, such as NK, T, and B cells (79). One of the 
most important functions of IL-12 is to enhance IFN-γ secretion (as the most potent 
mediator of IL-12 activities) by NK and T cells. Other major activities of this cytokine 
include the activation and proliferation of NK, CD8+T, and CD4+ T cells, enhancement 
of CD4+Th0 cells differentiation into Th1 cells, and promotion of ADCC against tumor 
cells (80-82). Moreover, IL-12 increases the secretion of specific antibodies which are 
assumed to activate the complement system and initiate tumor cell opsonization. Such a 
mechanism will sensitize tumor cells to the cytotoxic activity of myeloid and NK cells. 
IL-12 particularly boosts the production of immunoglobulin G (IgG) antibodies. These 
antibodies, which largely contribute to opsonization and complement fixation, have 
been confirmed to possess strong anti-tumor properties in vivo. Furthermore, IL-12 uses 
pro-inflammatory cytokines such as IFN-γ to promote the production of oxygen and 
nitrogen metabolites which are toxic to particular tumor cells (Figure 3) (83, 84). 
Following their activation by IL-12, NK cells can either directly kill tumor cells or 
damage the vascular endothelial integrity of the tumor. The secretion of chemokine 
receptor CXCR3 ligands (CXCL10 and CXCL9) due to the IL-12-induced production 
of tumor necrosis factor alpha (TNF-α), IFN-γ, and other pro-inflammatory cytokines 
interfere with angiogenesis process or cause endothelial cell injury by attracting 
activated NK and T cells (85). In other words, the induction of pro-inflammatory 
cytokines such as IFN-γ by IL-12 will enable them to exert direct toxicity on tumor cells 
or to initiate anti-angiogenic processes (86-88). 
Type I IFNs, IL-10, TGF-β, prostaglandin E2 (secreted by a variety of cancer cells), 
along with direct cell-to-cell contact have been reported to suppress the production of 
IL-12. For example, tumor-derived CD4+ CD25+T regs have been found to inhibit IL-12 
production through signals mediated by cytotoxic T-lymphocyte-associated 
protein 4(CTLA-4) as well as CD200-CD200L interactions. While IL-12 is not 
generally able to directly prevent cancer growth (exceptions to this general rule are 
possible), it is well capable of managing the Th1 cells-dependent anti-tumor immunity 
(89-91). 
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transduced counterparts (93). In an in vitro study, the same researchers found that sera 
from mice treated with the IL-12 (but not IL-4) can induce complement-mediated tumor 
cell lysis, compared to sera from non-responder mice (94). 
Lasek et al. reported that subcutaneous injection of genetically modified B78/IL-12 
cells triggered highly potent anti-tumor mechanisms which thoroughly inhibited 
tumorigenicity. Moreover, intratumoral injection of irradiated B78/IL-12 cells could 
decelerate tumor growth and thus regress melanoma. The researchers concluded that the 
use of IL-12 gene-modified tumor cell vaccines resulted in more favorable outcomes in 
comparison with the administration of unmodified tumor cell vaccines (95). 
In 1999, Dunussi-Joannopoulos et al. discovered that the systemic and local release of 
IL-12 had dissimilar clinical effects in SJL (a mice model of experimental autoimmune 
encephalomyelitis for multiple sclerosis) mice with transplantable leukemia. More 
precisely speaking; they found that although the systemic administration of rIL-12 could 
significantly decelerate leukemia growth and cause longer survival, it failed to 
completely inhibit disease progression. On the contrary, vaccines containing IL-12-
expresseingacute myeloid leukemia (AML) cells induced strong prophylactic and 
therapeutic immunity mechanisms against leukemia (96-98). In a study by Weiss et al., 
an electroporation-based gene transfer technique was adopted for the transfection of IL-
12 into two poorly immunogenic B16-F10 melanoma and RCC cell lines. After the 
subcutaneous injection of transfected tumor cells into the mice, IL-12 could 
significantly decelerate tumor formation and result in efficient and constant effects (99). 
In 2007, Tatsumi et al. isolated IL-12 gene-transfected DCs from subcutaneous CMS4 
tumor-bearing mice. They then evaluated the effects of the isolated DCs on the 
treatment of intrahepatic tumors. They found lower number of antigen-presenting cells 
along with lower allostimulatory capacity in the endogenous DCs isolated from the 
mentioned mice. Moreover, lower levels of IL-12p70 were produced by these DCs than 
by those obtained from normal mice. Antigen-presenting cells activity and 
allostimulatory capacity of DCs from subcutaneous CMS4 tumor-bearing mice turned 
back to their normal levels after the adenoviral transfection of IL-12 gene. Intratumoral 
administration of IL-12 gene-transfected DCs caused complete rejection of intrahepatic 
CMS4 tumors by inducing innate and acquired immunity and ensured long-term 
prevention of subcutaneous rechallenge with CMS4 tumor cells in mice. The crucial 
role of CD4+ and CD8+ T and NK cells in the rejection of intrahepatic tumors was also 
highlighted by antibody depletion examinations. In conclusion, IL-12 gene transfection 
could restore the functions of DCs isolated from tumor-bearing mice (100). 
In 2008, He et al. transduced tumor cell lysate-pulsed DCs with adenovirus expressing 
recombinant IL-12. They showed that vaccination of mice with the resultant DCs 
promoted their anti-tumor immunity to colon cancer (101). 
Although early clinical trials on systemic rIL-12 injections in humans indicated low 
response rate and high toxicity in some cases, the biological effects of IL-12 suggests its 
potential as an effective treatment option. Therefore, research has widely focused on the 
development of novel methods of IL-12 delivery, e.g. local intratumoral administration 
of IL-12, to benefit from the immunostimulatory effects of this molecule while 
preventing its undesirable toxicity (102-105). 
In a study in 2012, Dietrich et al. implanted tumors derived from autologous Lewis lung 
carcinoma cells in C57/BL6 mice. After seven days, a surgery was performed to not 
only remove the tumors, but also vaccinate the mice with IL-12-transfected Lewis lung 
carcinoma cells, empty plasmid, or dead cells. Analyses revealed the first group 
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(vaccinated with IL-12-transfected cells) to have the lowest tumor reoccurrence rate 
(≈40%). The rate was estimated at 60% in the control animals. While all types of 
vaccination could increase survival rate in comparison with the control group, the 
greatest percentage of tumor-free animals was seen in the mice vaccinated with IL-12-
transfected cells (73% vs. 45% in the control group). Moreover, no tumor developed in 
37%-59% of all vaccinated groups (106). 
As discussed, IL-12 can stimulate different types of direct and indirect anti-tumor 
activities including specific and non-specific immunity and non-immune mechanisms. 
Its efficiency has actually been well documented in tumor therapy in animals. Despite 
established benefits of IL-12 in treating solid tumors and hematologic malignancies (e.g. 
poorly immunogenic tumors) in mice, evidence of muscular, hepatic and hematologic 
toxicity (e.g. anemia, lymphopenia, and neutropenia) has also been reported. Studies on 
squirrel monkeys have reported hypoproteinemia, splenomegaly, hypophosphatemia, 
bone marrow hyperplasia, hypocalcemia, and enlarged lymph nodes following IL-12 
administration. Researchers attribute such hematologic adverse effects to the IL-12-
stimulated production of IFN-γ and TNF-α (107-110).  
A variety of gene therapy protocols have been developed by experimental research to 
minimize the toxicity and maximize the efficacy of IL-12 in tumor therapy. These 
protocols include the local and prolonged release of IL-12, the application of different 
viral and non-viral vectors for IL-12 gene delivery, and intratumoral injection of 
previously grown tumors or fibroblasts. The gene has also been effectively incorporated 
into vaccines containing tumor antigens, tumor cells, or DCs. 
The importance of IL-12 in regulating tumor-associated angiogenesis, which clearly 
distinguishes between the anti-tumor effects of IL-12 and IL-2, has been highlighted by 
a recent study suggesting that anti-angiogenic therapy with sunitinib and sorafenib, two 
vascular endothelial growth factor receptor inhibitors, increased hepatocellular 
carcinoma metastasis through the suppression of host-derived IL-12B (IL-12-p40) (111). 
According to research on tumor stroma, through its effects on IFN-γ secretion, IL-12can 
reverse myeloid-derived suppressor cells-mediated evasion strategies adopted by tumors 
(112). Furthermore, Fas-mediated collapse of tumor stroma may also be expected after 
local IL-12 release (113). IL-12 is also believed to affect the expression of various 
endothelial adhesion molecules, including the vascular cell adhesion molecule 1 
(VCAM-1), which is critical to controlling leukocyte recruitment to the tumor 
microenvironment (114). These actions clearly represent the direct effects of IL-12 on 
tumor growth and metastasis and distinguish this cytokine from IL-2 and IL-15.  
In an experimental study on mice, we confirmed lentiviral vector-transduced leukemia 
cells, engineered to express IL-12, as efficient immunostimulatory agents. The studied 
mice rejected both the initial IL-12-secreting and non-transduced, non-IL-12-expressing 
leukemia cells. In fact, an adaptive immune response was observed not only to the 
leukemia cell line initially used for immunization, but also to other leukemia cell lines. 
Based on our findings, complete protection could be ensured if one out of200 leukemia 
cells produced IL-12. A therapeutic, adaptive, and long-lasting immune response could 
hence be obtained through the described protocol (115). In order to evaluate the efficacy 
of the designed approach in treating solid tumors, which are definitely more common 
among humans, we engineered the squamous cell carcinoma cell line, SCC-VII, to 
express IL-12. Subcutaneous injections in mice were followed by the development of 
tumors presenting dense cell growth and low immune infiltration, catenation, and 
immunogenicity. Engineering of the cells to express IL-12 resulted in the identification 



Sheikhi A., et al. 

Iran.J.Immunol. VOL.13 NO.3 September 2016  160

and elimination of IL-12-secretingsarcoma cells and potent immune activation. No effects 
were observed in non-transduced SCC-VII cells (116). 
During the recent years, cancer immunotherapy techniques have significantly improved and 
several approaches have shown the efficiency of this therapeutic choice in cancer patients. 
While whole cell cancer vaccines have been revealed to be an efficient method for active 
immunotherapy, appropriate immunostimulatory agents such as cytokines are required for 
optimal activation of the immune system against tumor cells. It has been demonstrated that 
IL-12 and GM-CSF are proper cytokines to be used with whole tumor cell vaccines. 
Several studies have noted that these cytokines have potent anti-tumor activity and are 
involved in different activities such as activation of immune system effector cells as well as 
processing and presentation of antigens. IL-12 induces immune responses through a variety 
of mechanisms, including T, NK, and NKT cells stimulation, which are the major effector 
cells targeting tumor cells. Moreover, combination of IL-12 with other agents has been 
shown to induce synergistic therapeutic effects and serve as a promising treatment option 
for human cancers. While the separate application of IL-12 has yielded favorable anti-tumor 
effects, the complexity of the immune system signaling pathways prevents the prediction of 
the exact anti-tumor immune response evoked by the combination of GM-CSF and IL-12. 
Further investigations are required to explore the synergistic effect of the combination of 
IL-12 and GM-CSF on anti-cancer immune response. 
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