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ABSTRACT 
 
Background: Lepista sordida (LS) extract has been shown to possess anti-oxidant, 
anti-aging, and anti-tumor activities. However, the immunostimulatory effect of LS 
extract has not been elucidated. Objective: To characterize the impact of a water extract 
of LS (WE-LS) on the maturation and function of mouse dendritic cell (DC) in vitro and 
in vivo. Methods: Mouse bone marrow-derived DCs (BMDCs) were generated. Next, 
DC maturation was determined by flow cytometry, and cytokine production was 
measured by ELISA after WE-LS treatment. In addition, DC-induced OVA-specific T 
cell activation was assayed by [3H]-thymidine incorporation assay. Furthermore, the in 
vivo effects of WE-LS on DC maturation and Th1 responses in the spleens of mice were 
assessed by flow cytometry. Results: WE-LS treatment up-regulated co-stimulatory 
(CD40 and CD80) and MHC class II molecules, increased the production of tumor 
necrosis factor-alpha (TNF-α), IL-6 and IL-12, and enhanced both the proliferation and 
IFN-γ secretion of allogenic T cells in BMDCs, partially mediated by the TLR2 and 
TLR4 signaling pathways. Moreover, the in vivo administration of WE-LS to mice 
enhanced the up-regulation of CD40, CD80 and MHC class II molecules in spleen DCs. 
WE-LS also increased the generation of T helper type 1 (Th1) cells in vivo. 
Conclusion: These results suggest that WE-LS might have the potential to promote 
immunity against infection and cancer or to serve as an adjuvant in vaccines and 
immunotherapies. 
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INTRODUCTION 
 
Dendritic cells (DCs) are efficient antigen-presenting cells and key modulators that link 
innate and adaptive immunity. They can convert naive T cells towards either 
immunogenicity or tolerance when exposed to a particular antigen. Following 
stimulation with microbial stimuli and antigens, DCs migrate to secondary lymphoid 
tissues and become mature, which greatly enhances their ability to activate T cells (1). 
Toll-like receptors (TLRs) are the major pattern recognition receptors in DCs and 
initiate DC function to regulate immune responses via various signaling pathways (2). 
Because of their key role in immune regulation, DCs offer an individualized approach 
for therapeutic vaccines to combat cancer and microbial infections (3,4). Substances 
that induce the activation of DCs may serve as potential adjuvants in immunotherapies 
and vaccinations. 
Growing evidence suggests that many mushroom-derived dietary supplements and 
bioactive compounds may serve as adjuvants or immune stimulators in the treatment of 
cancer or infections (5,6). Many compounds have been identified and isolated from 
mushrooms, with a great potential to be used as nutraceutical and pharmaceutical 
products in the food industry. Among these compounds, water-soluble polysaccharides 
and their peptide/protein derivates and various small molecular weight substances are 
considered to have extremely important roles in immunomodulatory activity and anti-
cancer effects (7,8). 
Lepista sordida (Fr.) Singer, commonly known as flesh-brown blewit or lilac blewit, is 
an edible mushroom of the Tricholomataceae family from Asia, Europe, North America, 
and Brazil (9,10). This small and deep violet-colored mushroom frequently forms fairy 
rings in grasslands (11,12) and cannot be easily distinguished from Clitocybe nuda in 
the field. Due to the difficulty of its cultivation, only a few successful cultivations have 
been reported in Taiwan (13), China (14) and Thailand (10). Recently, bioactive 
extracts from L. sordid have been found to exhibit anti-aging (15), antioxidant (16), and, 
more importantly, anticancer activities where two distinct groups in China reported that 
L. sordida polysaccharide could lead to downregulations of NF-κB and caspase 
pathways, contributing to the suppression on the proliferation of human 
laryngocarcinoma cells (17,18). However, the immunomodulatory effects of L. sordid 
have not been reported.  
In this study, we investigated the effects of a water extract of Lepista sordida (WE-LS) 
on the maturation and function of mouse bone marrow-derived dendritic cells (BMDCs) 
in vitro and in vivo. 
 
 
MATERIALS AND METHODS  
 
Reagents. Recombinant mouse GM-CSF was provided by PeproTech Inc. (Rock Hill, 
NJ). Fluorescently conjugated anti-mouse monoclonal antibodies (CD11c-PE, CD4-PE, 
MHC-II-FITC, CD80-FITC, CD40-FITC, IFN-γ-FITC, and IL-4-FITC) and mouse 
cytokine ELISA kits (IL-12, TNF-α, IL-6, IFN-γ and IL-4) were purchased from 
eBioscience (San Diego, CA). Lipopolysaccharide (LPS) from E. coli 055:B5, 
lipoteichoic acid (LTA, LTA; L2515, from Staphylococcus aureus, Sigma, St. Louis, 
MO, USA) and [3H]thymidine were obtained from Sigma Chemical Co. (St. Louis, 
MO). 
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Fungal material identification. Lepista sordida (Supplemental Figure. 1) specimens 
were collected from the field in Wufeng, Taichung, and the myceliums were purified 
and cultured on potato dextrose agar (PDA, Difco, Maryland, USA). Next, 100 mg 
mycelium was removed and homogenized in liquid nitrogen. Genomic DNA was 
extracted from a 2-week-old culture through the use of a plant genomic DNA kit 
(GPG1002, Viogene), and then suspended in an elution solution (50 μl). The genomic 
DNA was amplified by the following universal primer pairs for the ITS region (ITS1, 
5.8S rDNA, and ITS2): ITS-A (5’-GGA AGG AGA AGT CGT AAC AAG G-3’) and 
ITS-B (5’- CTT TTC CTC CGC TTA TTG ATA TG-3’). PCR reactions were 
performed with a program  comprised of a hot start at 95 °C for 5 min, followed by 40 
cycles at 95 °C for 1 min, 55 °C for 1 min and 72 °C for 1 min and a final 72 °C step for 
7 min. PCR reactions were performed by Faith BioTechnology Co., Ltd., Taiwan. The 
4-μl PCR products were verified using 2% agarose gels (Supplemental Figure. 2)  prior 
to purification and sequencing. The PCR products were then sequenced by Genomics 
BioTechnology Co., Ltd., Taiwan, with an ABI 3730 XL DNA Analyzer (Applied 
Biosystems). Comparing the NCBI BLAST results, the DNA sequence was 99% similar 
to Lepista sordidaaccession no. KF874612.1. In this study, based on NCBI similarity 
results (Supplemental Figure. 3), the query sequence of the mushroom was shown to be 
Lepista sordida. The identified Lepista sordida line was cultured (Supplemental Figure 
4) and harvested at Taiwan Agricultural Research Institute. The fruiting bodies were 
immediately frozen after harvest and prepared for freeze-drying. 
Preparation of L. sordida Water Extract. After freeze-drying, 30 g dried mushroom 
sample was milled and extracted  employing an aqueous solution in a Soxhlet extractor 
(40x at 100 °C for 40 min). The extracts were filtered through Whatman no. 1 paper, 
and the filtrate was evaporated, lyophilized and dissolved in distilled water at 200 
mg/mL (stock solution). After that, the extract was passed through an EndoTrap Blue 
column (Hyglos, Bernried, Germany) in order to remove possible contaminating 
endotoxins (lipopolysaccharide or LPS). The level of endotoxin in the water extract was 
measured by a QCL-1000™ Endpoint Chromogenic LAL assay (Cambrex Bio Science 
Walkersville, Inc., Walkersville, MD, USA), and was found to be <0.1 ng endotoxin per 
mg (1 EU/mg) extract. Moreover, to neutralize endotoxins, the samples were incubated 
with rotation for 2 h at 37 °C with 10 μg/mL polymyxin B (Sigma). 
Mice and preparation of bone marrow-derived murine DCs. C57BL/6, C3H/HeN 
and C3H/HeJ (TLR-4 mutant) mice (6–8 weeks of age) were obtained from the National 
Laboratory Animal Center (Taipei, Taiwan). TLR-2 knockout mice were provided by 
Dr. Chih-Peng Chang (NCKU, Tainan, Taiwan). OT-II TCR transgenic mice were 
provided by Dr. Clifford Lowell (UCSF, San Francisco, CA). All mice were guaranteed 
to be free of specific pathogens and were housed at the Laboratory Animal Centre at 
National Chung Hsing University. Approval of the animal care protocols was obtained 
from the Animal Care and Use Committee of National Chung Hsing University 
(Number: IACUC-105-074). Murine bone marrow-derived DCs were generated 
according to methodspreviously described (19). CD11c+DCs were further selected from 
BM cells with CD11c (N418) microbeads (Miltenyi Biotec), according to the 
manufacturer’s instructions; these cells were utilized for the OVA-specific T-cell 
activation experiments. The purity of the CD11c+cells was >90% 
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In vitro phenotypic characterization of DCs. For the in vitro phenotypic 
characterization of DCs, immature BMDCs were respectively generated from C57BL/6, 
TLR-2 knockout (TLR-2 KO), C3/HeN and C3H/HeJ (TLR-4 mutant) mice; after that, 
cells were plated in 6-well culture plates (Corning, Cultek, Madrid, Spain) at 2 x 106 
cells per well and incubated in 2 ml complete RPMI 1640medium with distilled water 
(control), WE-LS, LPS (100 ng/ml,TLR4 agonist) or LTA (1 g/ml, TLR2 agonist) at37 
°C for 24 h (or for 6 hr for the TNF-alpha ELISA) in a humidified atmosphere 
containing 5% CO2. Thecells were resuspended in PBS containing 2% FBS, and stained 
with FITC-labelled anti-MHC-II, anti-CD40, or anti-CD80 plus PE-labelled CD11c 
antibodies (eBioscience, San Diego, CA,USA), for 30 minon ice. After washing with 
PBS, the fluorescent intensities were analyzed  via an AccuriTM C5 cytometer (BD 
Biosciences, San Jose, CA, USA) to quantitate the relative mean fluorescence intensity 
(MFI) changes of molecules on the BMDCs. In addition, the culture supernatants were 
collected and stored at -80 °C until cytokine examination with sandwich ELISA kits 
according to the manufacturer's specifications (all from eBioscience, San Diego, CA, 
USA). 
OVA-Specific T-Cell Activation. We employed  theprotocol for OVA-specific T-cell 
activation from our previous report (19). Briefly, spleens from OT-II mice were 
prepared, and CD4+-positive T cells were isolated using an EasySep Mouse CD4 
Positive Selection Kit according to the manufacturer's instructions (Stem Cell 
Technologies, Grenoble, France). Immature BMDCs were pulsed with 2 μg/mL 
OVA323–339(OVAP2) (synthesized by Echo Chemical Co., Taiwan) in the presence of 
WE-LS (100 μg/mL) for 24 hr. The cells were  further washed, and OVAP2-specific 
CD4+T cells (2 × 105) were added to the culture at a DC:T cell ratio of 1:5, 1:10 and 
1:25 in 96-well round-bottom plates (Corning). At the end of 96 h, cell proliferation was 
measured through adding 1 μCi [3H] thymidine(Sigma Chemical Co, St. Louis, 
MO,USA)for an overnight incubation and quantified by liquid scintillation counting on 
a β-Counter (Beckman Instruments, Palo Alto, CA, USA). In addition, the culture 
supernatants were collected, and IFN-γ type-1 T helper (Th1) and IL-4 type-2 T helper 
(Th2) cytokine levels were specified using sandwich ELISA kits . 
In vivo phenotypic characterization of DCs. For the in vivo determination of the 
effect of WE-LS on DC maturation, C57BL/6 mice (n=6) were injected 
intraperitoneally (i.p.) with WE-LS at 20 or 100 mg/kg in a total volume of100 μL 
distilled water once daily for 6 consecutive days. The control group received an 
equivalent volume (100 μL) of distilled water. Twenty-four hours after the last 
injection, the mice were sacrificed, and the spleen of each mouse was isolated 
aseptically and minced using sterile forceps. The cells were then washed twice with 
PBS, and the expression of maturation (CD40 and CD80) and MHC class II markers 
was examined by an AccuriTM C5 cytometer. The spleen DCs were identified as 
lineage-CD11c+cells.Control staining with isotype control IgGs was conducted in all 
experiments. 
Detection of IFN-γ+ and IL-4+ CD4+ T Lymphocytes in Murine Spleens. C57/BL6 
mice received i.p. injections of 20 or 100 mg/kg WE-LS in a total volume of 100 μL 
distilled water once daily for 6 consecutive days. For 6 consecutive days, the control 
group received an equivalent volume of distilled water once daily. Twenty-four hours 
after the last injection, splenocytes were harvested and stimulated in vitro for 4 hours 
with phorbol 12-myristate 13-acetate (50 ng/ml), and ionomycin (1 μM; both from 
Calbiochem) were added with brefeldin A (10 μg/mL) (Sigma, St. Louis, MO, USA) 
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DISCUSSION 
 
Previous studies have shown that liquid extracts from mushrooms can promote DC 
maturation for cancer treatment (20,21). In this study, we reported, for the first time, 
that WE-LS strongly up-regulated the expression of CD40, CD80, CD86 and MHC 
class II molecules on BMDCs in vitro. In addition, the in vivo administration of WE-LS 
also induced DC maturation in the spleen and Th1 immune responses, suggesting that 
WE-LS has adjuvant activity, which was confirmed by DC activation. 
It has been reported that Th1 immune responses play a major role in anti-tumor 
immunity, and Th1 polarization is regulated mainly by DCs (22). We report here that 
WE-LS promoted the secretion of TNF-α and IL-12 by BMDCs, further facilitatingTh1 
skewing (23). Consistently, WE-LS-treated DCs significantly induced the secretion of 
IFN-γ by OVA-specific T cells. Although the increase in Th1 cells of murine 
splenpocytes did not seem to be as remarkable as expected in our experiment (Fig. 6A),  
an average 9% of the total CD4 T cells showed IFN-γ+ compared to  approximate1% in 
the control group. However, only about 0.4% of CD4 Th cells exhibited IL-4+, lower 
than the control mice (~0.9%), in response to the stimulation of L. sordida. 
Nevertheless, these results demonstrate that WE-LS potentially induces T-cell 
polarization to the Th1 phenotype. 
A number of studies have indicated that TLRs, particularly TLR2 and TLR4, play a 
crucial role in DC activation by mushroom components, including polysaccharides, 
proteoglycans and proteins (20,21,24). Accordingly, we examined whether TLR2 and 
TLR4 were also involved in the mechanism of WE-LS-induced DC maturation. As 
shown in Fig. 3, DC maturation and cytokine secretion induced by WE-LS, were 
markedly reduced in BMDCs obtained from TLR2-deficient and TLR4 mutant mice, 
meaningTLR2 and TLR4 were required for WE-LS-induced DC activation. However, 
the suppressive effects on maturation and cytokine production were not complete, 
suggesting that other innate immune receptors, such as other TLRs and C-type lectin 
receptors (CLRs), may also be involved in WE-LS-mediated DC activation (25-27). 
In conclusion, our results provide strong evidence that WE-LS effectively stimulates the 
activation and maturation of DCs via TLR2 and TLR4, hence the fact that WE-LS is a 
potential adjuvant  for regulating immune responses in vaccines or cancer treatment. 
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