IpaD-loaded N-trimethyl Chitosan Nanoparticles Can Efficiently Protect Guinea Pigs against Shigella Flexneri

Document Type: Original Article

Authors

Center of Biological Science and Technology, Imam Hosein University, Tehran, Iran

Abstract

Background: Shigella flexneri is a pathogen responsible for shigellosis around the world, especially in developing countries. Many immunogenic antigens have been introduced as candidate vaccines against Shigella, including N-terminal region of IpaD antigen (NIpaD). Objective: To evaluate the efficiency of O-metylated free trimethyl chitosan nanoparticles (TMC NPs) in the oral delivery of NIpaD. Methods: TMC was synthesized by a two-step method from high molecular weight chitosan. The recombinant NIpaD protein was used as the immunogen. The protein was overexpressed in E. coli BL21 (DE3) and characterized by gel electrophoresis. The NIpaD-loaded TMC NPs were synthesized by ionic gelation method and were characterized by electron microscopy. NPs were orally administered to guinea pigs and specific humoral and mucosal immune responses were assessed by serum IgG and secretory IgA, respectively. The protectivity of the formulation was assessed by keratoconjunctivitis (Sereny) test. Results: The immunized guinea pigs showed a significant raise in rNIpaD-specific serum IgG and faecal IgA titers. Specific secretory IgA was detected in eye-washes. Sereny test results showed that immunized animals vaccinated with IpaD-loaded TMC NPS tolerated the wild type of Shigella flexneri 2a in Sereny test. However, in the group immunized with NIpaD antigen and non-immunized group, no increase was observed in antibody titer against NIpaD. These animals were infected following the challenge with Shigella flexneri 2a (p<0.0152). Conclusion: The recombinant rNIpaD formulated with TMC obtained from high molecular weight chitosan, can be considered as a mucosal vaccine against Shigella flexneri through oral route.

Keywords