Document Type : Review Article

Authors

Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran.

Abstract

Cell-mediated immunity (CMI) is crucial in controlling the highly aggressive and progressive SARS-CoV-2 infection. Despite extensive researches on severe COVID-19 infection, the etiology and/or mechanisms of lymphopenia, decreased T cell-mediated responses in patients, cytokine release storms (CRS), and enhanced pro-inflammatory mediators are not fully understood. Several T cell subpopulations, including innate-like lymphocytes (ILLs) and conventional T cells, are involved in COVID-19 infection; however, their contribution to immunity and complications remains to be more elucidated. CD16+ T cells are among the effective players in the development of T helper1 (Th1) responses in COVID-19 infection, while their robust cytolytic properties contribute to lung tissue damage. While CD56-CD16bright NK cells play a protective role, natural killer T (NKT) cells, mucosal-associated invariant T (MAIT) cells, and γδ T cells and their roles in COVID-19 require further investigation. The involvement of the other T cell subsets, such as Th17, along with neutrophils, adds to the complexity of the situation. In this review, we presented and discussed the findings of recent studies on T cell responses and the contribution of each type of immune cells to COVID-19.

Keywords

  1. Samudrala PK, Kumar P, Choudhary K, Thakur N, Wadekar GS, Dayaramani R, et al. Virology, pathogenesis, diagnosis and in-line treatment of COVID-19. Eur J Pharmacol. 2020;883:173375.
  2. Roberts S, Girardi M. Conventional and Unconventional T Cells. In: Gaspari AA, Tyring SK, editors. Clinical and Basic Immunodermatology. London: Springer London; 2008. p. 85-104.
  3. Cevik M, Kuppalli K, Kindrachuk J, Peiris M. Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ. 2020;371:m3862.
  4. Arshad N, Laurent-Rolle M, Ahmed WS, Hsu JC, Mitchell SM, Pawlak J, et al. SARS-CoV-2 accessory proteins ORF7a and ORF3a use distinct mechanisms to downregulate MHC-I surface expression. bioRxiv : the preprint server for biology. 2022.
  5. Gil-Etayo FJ, Suàrez-Fernández P, Cabrera-Marante O, Arroyo D, Garcinuño S, Naranjo L, et al. T-Helper Cell Subset Response Is a Determining Factor in COVID-19 Progression. Frontiers in cellular and infection microbiology. 2021;11:624483.
  6. Flower TG, Buffalo CZ, Hooy RM, Allaire M, Ren X, Hurley JH. Structure of SARS-CoV-2 ORF8, a rapidly evolving immune evasion protein. Proceedings of the National Academy of Sciences of the United States of America. 2021;118(2).
  7. Agerer B, Koblischke M, Gudipati V, Montano-Gutierrez LF, Smyth M, Popa A, et al. SARS-CoV-2 mutations in MHC-I-restricted epitopes evade CD8(+) T cell responses. Sci Immunol. 2021;6(57).
  8. Stanevich OV, Alekseeva EI, Sergeeva M, Fadeev AV, Komissarova KS, Ivanova AA, et al. SARS-CoV-2 escape from cytotoxic T cells during long-term COVID-19. Nature Communications. 2023;14(1):149.
  9. Georg P, Astaburuaga-García R, Bonaguro L, Brumhard S, Michalick L, Lippert LJ, et al. Complement activation induces excessive T cell cytotoxicity in severe COVID-19. Cell. 2022;185(3):493-512.e25.
  10. Wu X, Wu P, Shen Y, Jiang X, Xu F. CD8(+) Resident Memory T Cells and Viral Infection. Frontiers in immunology. 2018;9:2093.
  11. De Biasi S, Meschiari M, Gibellini L, Bellinazzi C, Borella R, Fidanza L, et al. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat Commun. 2020;11(1):3434.
  12. Zhao Q, Meng M, Kumar R, Wu Y, Huang J, Deng Y, et al. Lymphopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A systemic review and meta-analysis. Int J Infect Dis. 2020;96:131-5.
  13. Yoshida M, Worlock KB, Huang N, Lindeboom RGH, Butler CR, Kumasaka N, et al. Local and systemic responses to SARS-CoV-2 infection in children and adults. Nature. 2022;602(7896):321-7.
  14. Yang J, Zhang E, Zhong M, Yang Q, Hong K, Shu T, et al. 2020.
  15. Boettler T, Csernalabics B, Salie H, Luxenburger H, Wischer L, Salimi Alizei E, et al. SARS-CoV-2 vaccination can elicit a CD8 T-cell dominant hepatitis. J Hepatol. 2022;77(3):653-9.
  16. Rupp J, Dreo B, Gutl K, Fessler J, Moser A, Haditsch B, et al. T Cell Phenotyping in Individuals Hospitalized with COVID-19. J Immunol. 2021;206(7):1478-82.
  17. Dongling Wu1 XZ, Yonah Ziemba1 , Nina Haghi2, Judith Brody1* and Peihong Hsu1. Dynamics of Peripheral Blood T-lymphocytes Have Predictive Values for the Clinical Outcome of COVID-19 Patients in Intensive Care Unit. Clinical Pathology. December 14, 2021.
  18. Al-Mterin MA, Alsalman A, Elkord E. Inhibitory Immune Checkpoint Receptors and Ligands as Prognostic Biomarkers in COVID-19 Patients. Frontiers in immunology. 2022;13.
  19. Zhou X, Ye G, Lv Y, Guo Y, Pan X, Li Y, et al. IL-6 drives T cell death to participate in lymphopenia in COVID-19. Int Immunopharmacol. 2022;111:109132.
  20. Elahi R, Karami P, Heidary AH, Esmaeilzadeh A. An updated overview of recent advances, challenges, and clinical considerations of IL-6 signaling blockade in severe coronavirus disease 2019 (COVID-19). Int Immunopharmacol. 2022;105:108536.
  21. Paludan SR, Mogensen TH. Innate immunological pathways in COVID-19 pathogenesis. Sci Immunol. 2022;7(67):eabm5505.
  22. Osterdahl MF, Christakou E, Hart D, Harris F, Shahrabi Y, Pollock E, et al. Concordance of B- and T-cell responses to SARS-CoV-2 infection, irrespective of symptoms suggestive of COVID-19. J Med Virol. 2022;94(11):5217-24.
  23. Li Q, Wang Y, Sun Q, Knopf J, Herrmann M, Lin L, et al. Immune response in COVID-19: what is next? Cell death and differentiation. 2022;29(6):1107-22.
  24. Sadeghi A, Tahmasebi S, Mahmood A, Kuznetsova M, Valizadeh H, Taghizadieh A, et al. Th17 and Treg cells function in SARS-CoV2 patients compared with healthy controls. J Cell Physiol. 2021;236(4):2829-39.
  25. Parackova Z, Bloomfield M, Klocperk A, Sediva A. Neutrophils mediate Th17 promotion in COVID-19 patients. J Leukoc Biol. 2021;109(1):73-6.
  26. Sharif-Askari FS, Sharif-Askari NS, Hafezi S, Mdkhana B, Alsayed HAH, Ansari AW, et al. Interleukin-17, a salivary biomarker for COVID-19 severity. PloS one. 2022;17(9):e0274841.
  27. Gupta G, Shareef I, Tomar S, Kumar MSN, Pandey S, Sarda R, et al. Th1/Th2/Th17 Cytokine Profile among Different Stages of COVID-19 Infection. National Academy science letters National Academy of Sciences, India. 2022;45(4):363-9.
  28. Wu D, Yang XO. TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib. J Microbiol Immunol Infect. 2020;53(3):368-70.
  29. Shahbazi M, Jafari M, Moulana Z, Sepidarkish M, Bagherzadeh M, Rezanejad M, et al. Reduced frequency of T helper 17 and T helper 1 cells and their association with critical coronavirus disease 2019. Apmis. 2021;129(5):271-9.
  30. Tahmasebi S, El-Esawi MA, Mahmoud ZH, Timoshin A, Valizadeh H, Roshangar L, et al. Immunomodulatory effects of nanocurcumin on Th17 cell responses in mild and severe COVID-19 patients. J Cell Physiol. 2021;236(7):5325-38.
  31. Vatsalya V, Li F, Frimodig JC, Gala KS, Srivastava S, Kong M, et al. Therapeutic Prospects for Th-17 Cell Immune Storm Syndrome and Neurological Symptoms in COVID-19: Thiamine Efficacy and Safety, In-vitro Evidence and Pharmacokinetic Profile. medRxiv. 2020.
  32. Khesht AMS, Karpisheh V, Saeed BQ, Zekiy AO, Yapanto LM, Afjadi MN, et al. Different T cell related immunological profiles in COVID-19 patients compared to healthy controls. International Immunopharmacology. 2021;97:107828.
  33. Wu D, Yang XO. Dysregulation of Pulmonary Responses in Severe COVID-19. Viruses. 2021;13(6):957.
  34. Gutiérrez-Bautista JF, Rodriguez-Nicolas A, Rosales-Castillo A, Jiménez P, Garrido F, Anderson P, et al. Negative clinical evolution in COVID-19 patients is frequently accompanied with an increased proportion of undifferentiated th cells and a strong underrepresentation of the Th1 subset. Frontiers in immunology. 2020;11:596553.
  35. Cagan E, Tezcan G, Simsek A, Kizmaz MA, Dombaz F, Asan A, et al. The age-dependent role of th22, tc22, and tc17 cells in the severity of pneumonia in covid-19 immunopathogenesis. Viral immunology. 2022;35(4):318-27.
  36. Ryan FJ, Hope CM, Masavuli MG, Lynn MA, Mekonnen ZA, Yeow AEL, et al. Long-term perturbation of the peripheral immune system months after SARS-CoV-2 infection. BMC medicine. 2022;20(1):26.
  37. Zhang K, Chen L, Zhu C, Zhang M, Liang C. Current Knowledge of Th22 Cell and IL-22 Functions in Infectious Diseases. Pathogens. 2023;12(2):176.
  38. Zhang K, Chen L, Zhu C, Zhang M, Liang C. Current Knowledge of Th22 Cell and IL-22 Functions in Infectious Diseases. Pathogens (Basel, Switzerland). 2023;12(2).
  39. Stassen M, Schmitt E, Bopp T. From interleukin-9 to T helper 9 cells. Annals of the New York Academy of Sciences. 2012;1247:56-68.
  40. Godfrey DI, Hammond KJ, Poulton LD, Smyth MJ, Baxter AG. NKT cells: facts, functions and fallacies. Immunol Today. 2000;21(11):573-83.
  41. Lo Presti E, De Gaetano A, Pioggia G, Gangemi S. Comprehensive Analysis of the ILCs and Unconventional T Cells in Virus Infection: Profiling and Dynamics Associated with COVID-19 Disease for a Future Monitoring System and Therapeutic Opportunities. Cells. 2022;11(3):542.
  42. Kim DM, Seo JW, Kim Y, Park U, Ha NY, Park H, et al. Eosinophil-mediated lung inflammation associated with elevated natural killer T cell response in COVID-19 patients. Korean J Intern Med. 2022;37(1):201-9.
  43. Zingaropoli MA, Perri V, Pasculli P, Cogliati Dezza F, Nijhawan P, Savelloni G, et al. Major reduction of NKT cells in patients with severe COVID-19 pneumonia. Clin Immunol. 2021;222:108630.
  44. Mahmoud Salehi Khesht A, Karpisheh V, Qubais Saeed B, Olegovna Zekiy A, Yapanto LM, Nabi Afjadi M, et al. Different T cell related immunological profiles in COVID-19 patients compared to healthy controls. Int Immunopharmacol. 2021;97:107828.
  45. Zhang JY, Wang XM, Xing X, Xu Z, Zhang C, Song JW, et al. Single-cell landscape of immunological responses in patients with COVID-19. Nat Immunol. 2020;21(9):1107-18.
  46. Mazzoni A, Salvati L, Maggi L, Capone M, Vanni A, Spinicci M, et al. Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent. The Journal of clinical investigation. 2020;130(9):4694-703.
  47. Koay HF, Gherardin NA, Nguyen THO, Zhang W, Habel JR, Seneviratna R, et al. Are NKT cells a useful predictor of COVID-19 severity? Immunity. 2022;55(2):185-7.
  48. Saresella M, Trabattoni D, Marventano I, Piancone F, La Rosa F, Caronni A, et al. NK Cell Subpopulations and Receptor Expression in Recovering SARS-CoV-2 Infection. Mol Neurobiol. 2021;58(12):6111-20.
  49. Piersma SJ, Brizic I. Natural killer cell effector functions in antiviral defense. FEBS J. 2022;289(14):3982-99.
  50. Bjorkstrom NK, Ponzetta A. Natural killer cells and unconventional T cells in COVID-19. Curr Opin Virol. 2021;49:176-82.
  51. Bergantini L, d'Alessandro M, Cameli P, Cavallaro D, Gangi S, Cekorja B, et al. NK and T Cell Immunological Signatures in Hospitalized Patients with COVID-19. Cells. 2021;10(11).
  52. Vietzen H, Zoufaly A, Traugott M, Aberle J, Aberle S, Puchhammer-Stöckl E. NK cell receptor NKG2C deletion and HLA-E variants are risk factors for severe COVID-19. 2020.
  53. Toor SM, Saleh R, Sasidharan Nair V, Taha RZ, Elkord E. T-cell responses and therapies against SARS-CoV-2 infection. Immunology. 2021;162(1):30-43.
  54. Tomić S, Đokić J, Stevanović D, Ilić N, Gruden-Movsesijan A, Dinić M, et al. Reduced expression of autophagy markers and expansion of myeloid-derived suppressor cells correlate with poor T cell response in severe COVID-19 patients. Frontiers in immunology. 2021;12:614599.
  55. Nielsen MM, Witherden DA, Havran WL. gammadelta T cells in homeostasis and host defence of epithelial barrier tissues. Nat Rev Immunol. 2017;17(12):733-45.
  56. Caron J, Ridgley LA, Bodman-Smith M. How to Train Your Dragon: Harnessing Gamma Delta T Cells Antiviral Functions and Trained Immunity in a Pandemic Era. Frontiers in immunology. 2021;12:666983.
  57. Minton K. Unconventional T cells shape tissue-specific lymph node responses. Nat Rev Immunol. 2022;22(10):594-5.
  58. Xiong N, Raulet DH. Development and selection of γδ T cells. Immunological reviews. 2007;215(1):15-31.
  59. Pauza CD, Poonia B, Li H, Cairo C, Chaudhry S. gammadelta T Cells in HIV Disease: Past, Present, and Future. Frontiers in immunology. 2014;5:687.
  60. Poccia F, Agrati C, Martini F, Capobianchi MR, Wallace M, Malkovsky M. Antiviral reactivities of γδ T cells. Microbes and infection. 2005;7(3):518-28.
  61. Cimini E, Agrati C. gammadelta T Cells in Emerging Viral Infection: An Overview. Viruses. 2022;14(6):1166.
  62. Yazdanifar M, Mashkour N, Bertaina A. Making a case for using γδ T cells against SARS-CoV-2. Critical Reviews in Microbiology. 2020;46(6):689-702.
  63. Di Simone M, Corsale AM, Lo Presti E, Scichilone N, Picone C, Giannitrapani L, et al. Phenotypical and Functional Alteration of γδ T Lymphocytes in COVID-19 Patients: Reversal by Statins. Cells. 2022;11(21):3449.
  64. Jouan Y, Guillon A, Gonzalez L, Perez Y, Boisseau C, Ehrmann S, et al. Phenotypical and functional alteration of unconventional T cells in severe COVID-19 patients. J Exp Med. 2020;217(12).
  65. Del Bello A, Kamar N, Vergez F, Faguer S, Marion O, Beq A, et al. Adaptive lymphocyte profile analysis discriminates mild and severe forms of COVID-19 after solid organ transplantation. Kidney Int. 2021;100(4):915-27.
  66. Gay L, Rouviere M-S, Mezouar S, Richaud M, Gorvel L, Foucher E, et al. Vγ9Vδ2 T cells are potent inhibitors of SARS-CoV-2 replication and exert effector phenotypes in COVID-19 patients. bioRxiv : the preprint server for biology. 2022:2022.04.15.487518.
  67. Rijkers G, Vervenne T, van der Pol P. More bricks in the wall against SARS-CoV-2 infection: involvement of gamma9delta2 T cells. Cell Mol Immunol. 2020;17(7):771-2.
  68. Carissimo G, Xu W, Kwok I, Abdad MY, Chan YH, Fong SW, et al. Whole blood immunophenotyping uncovers immature neutrophil-to-VD2 T-cell ratio as an early marker for severe COVID-19. Nat Commun. 2020;11(1):5243.
  69. Cerapio JP, Perrier M, Pont F, Tosolini M, Laurent C, Bertani S, et al. Single-Cell RNAseq Profiling of Human gammadelta T Lymphocytes in Virus-Related Cancers and COVID-19 Disease. Viruses. 2021;13(11).
  70. Schonrich G, Raftery MJ, Samstag Y. Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. Advances in biological regulation. 2020;77:100741.
  71. Mukund K, Nayak P, Ashokkumar C, Rao S, Almeda J, Betancourt-Garcia MM, et al. Immune Response in Severe and Non-Severe Coronavirus Disease 2019 (COVID-19) Infection: A Mechanistic Landscape. Frontiers in immunology. 2021;12:738073.
  72. Odak I, Barros-Martins J, Bosnjak B, Stahl K, David S, Wiesner O, et al. Reappearance of effector T cells is associated with recovery from COVID-19. EBioMedicine. 2020;57:102885.
  73. Lei L, Qian H, Yang X, Zhang X, Zhang D, Dai T, et al. The phenotypic changes of gammadelta T cells in COVID-19 patients. J Cell Mol Med. 2020;24(19):11603-6.
  74. Chen XJ, Li K, Xu L, Yu YJ, Wu B, He YL, et al. Novel insight from the first lung transplant of a COVID-19 patient. Eur J Clin Invest. 2021;51(1):e13443.
  75. von Massow G, Oh S, Lam A, Gustafsson K. Gamma Delta T Cells and Their Involvement in COVID-19 Virus Infections. Frontiers in immunology. 2021;12:741218.
  76. Wang H, Wang Z, Cao W, Wu Q, Yuan Y, Zhang X. Regulatory T cells in COVID-19. Aging Dis. 2021;12(7):1545-53.
  77. El-Badawy O, Elsherbiny NM, Abdeltawab D, Magdy DM, Bakkar LM, Hassan SA, et al. COVID-19 Infection in Patients with Comorbidities: Clinical and Immunological Insight. Clin Appl Thromb Hemost. 2022;28:10760296221107889.
  78. Zahran AM, Abdel-Rahim MH, Nasif KA, Hussein S, Hafez R, Ahmad AB, et al. Association of follicular helper T and follicular regulatory T cells with severity and hyperglycemia in hospitalized COVID-19 patients. Virulence. 2022;13(1):569-77.
  79. Muyayalo KP, Huang DH, Zhao SJ, Xie T, Mor G, Liao AH. COVID-19 and Treg/Th17 imbalance: Potential relationship to pregnancy outcomes. American journal of reproductive immunology (New York, NY : 1989). 2020;84(5):e13304.
  80. Russo C, Raiden S, Algieri S, De Carli N, Davenport C, Sarli M, et al. Extracellular ATP and Imbalance of CD4+ T Cell Compartment in Pediatric COVID-19. Frontiers in cellular and infection microbiology. 2022;12:893044.
  81. Neumann J, Prezzemolo T, Vanderbeke L, Roca CP, Gerbaux M, Janssens S, et al. Increased IL-10-producing regulatory T cells are characteristic of severe cases of COVID-19. Clin Transl Immunology. 2020;9(11):e1204.
  82. Wang F, Hou H, Luo Y, Tang G, Wu S, Huang M, et al. The laboratory tests and host immunity of COVID-19 patients with different severity of illness. JCI Insight. 2020;5(10).
  83. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71(15):762-8.
  84. Di Sante G, Buonsenso D, De Rose C, Tredicine M, Palucci I, De Maio F, et al. Immunopathology of SARS-CoV-2 Infection: A Focus on T Regulatory and B Cell Responses in Children Compared with Adults. Children (Basel). 2022;9(5).
  85. Gupta S, Su H, Narsai T, Agrawal S. SARS-CoV-2-Associated T-Cell Responses in the Presence of Humoral Immunodeficiency. Int Arch Allergy Immunol. 2021;182(3):195-209.
  86. Hsieh LE, Grifoni A, Dave H, Wang J, Johnson D, Zellner J, et al. SARS-CoV-2-specific T cell responses and immune regulation in infected pregnant women. J Reprod Immunol. 2022;149:103464.
  87. Shi J, Zhou J, Zhang X, Hu W, Zhao JF, Wang S, et al. Single-Cell Transcriptomic Profiling of MAIT Cells in Patients With COVID-19. Frontiers in immunology. 2021;12:700152.
  88. Hinks TSC, Zhang XW. MAIT Cell Activation and Functions. Frontiers in immunology. 2020;11:1014.
  89. Deschler S, Kager J, Erber J, Fricke L, Koyumdzhieva P, Georgieva A, et al. Mucosal-Associated Invariant T (MAIT) Cells Are Highly Activated and Functionally Impaired in COVID-19 Patients. Viruses. 2021;13(2):241.
  90. Parrot T, Gorin JB, Ponzetta A, Maleki KT, Kammann T, Emgard J, et al. MAIT cell activation and dynamics associated with COVID-19 disease severity. Sci Immunol. 2020;5(51).
  91. Flament H, Rouland M, Beaudoin L, Toubal A, Bertrand L, Lebourgeois S, et al. Outcome of SARS-CoV-2 infection is linked to MAIT cell activation and cytotoxicity. Nature Immunology. 2021;22(3):322-35.
  92. van Wilgenburg B, Scherwitzl I, Hutchinson EC, Leng T, Kurioka A, Kulicke C, et al. MAIT cells are activated during human viral infections. Nat Commun. 2016;7(1):11653.
  93. Akasov RA, Khaydukov EV. Mucosal-associated invariant T cells as a possible target to suppress secondary infections at COVID-19. Frontiers in immunology. 2020;11:1896.
  94. Nielsen SS, Vibholm LK, Monrad I, Olesen R, Frattari GS, Pahus MH, et al. SARS-CoV-2 elicits robust adaptive immune responses regardless of disease severity. EBioMedicine. 2021;68:103410.
  95. Imeneo A, Alessio G, Di Lorenzo A, Campogiani L, Lodi A, Barreca F, et al. In Patients with Severe COVID-19, the Profound Decrease in the Peripheral Blood T-Cell Subsets Is Correlated with an Increase of QuantiFERON-TB Gold Plus Indeterminate Rates and Reflecting a Reduced Interferon-Gamma Production. Life (Basel). 2022;12(2).
  96. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620-9.
  97. Meckiff BJ, Ramirez-Suastegui C, Fajardo V, Chee SJ, Kusnadi A, Simon H, et al. Imbalance of Regulatory and Cytotoxic SARS-CoV-2-Reactive CD4(+) T Cells in COVID-19. Cell. 2020;183(5):1340-53 e16.
  98. Simsek A, Kizmaz MA, Cagan E, Dombaz F, Tezcan G, Asan A, et al. Assessment of CD39 expression in regulatory T-cell subsets by disease severity in adult and juvenile COVID-19 cases. J Med Virol. 2022;94(5):2089-101.
  99. Scharf RE, Anaya J-M. Post-COVID Syndrome in Adults—An Overview. Viruses. 2023;15(3):675.
  100. Fenoglio D, Dentone C, Parodi A, Di Biagio A, Bozzano F, Vena A, et al. Characterization of T lymphocytes in severe COVID‐19 patients. Journal of medical virology. 2021;93(9):5608-13.