Document Type : Original Article

Authors

1 Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.

2 Blood Transfusion Research Center, High Institute for Education and Research, Shiraz, Iran.

3 Department of Surgery, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.

4 Immunology Center for Excellence, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.

Abstract

Background: Buerger’s disease, also known as Thromboangiitis Obliterans (TAO), is a progressive, inflammatory vascular disease with unknown etiology.
Objective: To address the degree of T cell immunosenescence in this inflammatory disease, the frequency of senescent T cells expressing CD57 and/or CD153 (CD30L) in patients with TAO.
Methods: In this study, nine male cigarette smoker patients with TAO, nine male healthy cigarette smokers, and nine male healthy non-smoker blood donors were enrolled. PBMCs were extracted from the blood of all participants and stored in liquid nitrogen before use. The percentages of senescent T cells were detected by flow cytometry. The results were analyzed using non-parametric statistical tests.
Results: The frequencies of senescent CD3+CD4+CD57+CD153+ and CD3+CD4+CD57-CD153+ T cells significantly increased in patients compared with the non-smoker controls (p=0.01 and p=0.04, respectively). The frequency of senescent CD3+CD4-CD57-CD153+ T cells was higher in patients compared with the smoker controls (p=0.02). In patients with TAO, CD57+CD153- cells were more frequent in CD3hiCD4- and CD3hiCD4+ T cells compared with the CD3loCD4- and CD3loCD4+ T cells (p=0.008 and p=0.0002, respectively). Conversely, the frequency of CD57-CD153+ T cells was significantly higher in CD3loCD4- T cells compared with the CD3hiCD4- T cells (p=0.004). The percentage of CD3+CD4+CD57+CD153- T cells correlated negatively with smoking level in smoker controls (p=0.02, Spearman r=-0.80).
Conclusion: Elevated frequencies of senescent CD4+CD57+CD153+ and CD4+CD57-CD153+ T cells in patients compared with non-smoker and smoker controls suggest the contribution of immunosenescence in TAO.

Keywords

  1. Rivera-Chavarría IJ, Brenes-Gutiérrez JD. Thromboangiitis obliterans (Buerger's disease). Ann Med Surg (Lond). 2016;7:79-82.
  2. Qaja E, Muco E, Hashmi MF. Buerger Disease. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.; 2022.
  3. Modaghegh M-HS, Kazemzadeh GH, Ravari H, Johari HG, Barzanuni A. Buerger’s disease in the northeast of Iran: Epidemiology and clinical features. Vascular. 2015;23(5):519-24.
  4. Vijayakumar A, Tiwari R, Kumar Prabhuswamy V. Thromboangiitis Obliterans (Buerger's Disease)-Current Practices. Int J Inflam. 2013;2013:156905.
  5. Klein-Weigel P, Volz TS, Zange L, Richter J. Buerger's disease: providing integrated care. J Multidiscip Healthc. 2016;9:511-8.
  6. Del Conde I, Peña C. Buerger disease (thromboangiitis obliterans). Tech Vasc Interv Radiol. 2014;17(4):234-40.
  7. Puéchal X, Fiessinger JN. Thromboangiitis obliterans or Buerger's disease: challenges for the rheumatologist. Rheumatology (Oxford). 2007;46(2):192-9.
  8. Shapouri-Moghaddam A, Saeed Modaghegh MH, Rahimi HR, Ehteshamfar SM, Tavakol Afshari J. Molecular mechanisms regulating immune responses in thromboangiitis obliterans: A comprehensive review. Iran J Basic Med Sci. 2019;22(3):215-24.
  9. Ketha SS, Cooper LT. The role of autoimmunity in thromboangiitis obliterans (Buerger's disease). Ann N Y Acad Sci. 2013;1285:15-25.
  10. Shapouri-Moghaddam A, Afshari SJT, Rahimi HR, Modaghegh M-HS, Mahmoudi M, Ehteshamfar SM. Para-Clinical and Immunological Evaluation in Buerger's Disease as a Suspected Autoimmune Disease: Case Series. Reports of Biochemistry & Molecular Biology. 2021;9(4):379.
  11. Dellalibera-Joviliano R, Joviliano EE, Silva JSd, Evora PRB. Activation of cytokines corroborate with development of inflammation and autoimmunity in thromboangiitis obliterans patients. Clinical & Experimental Immunology. 2012;170(1):28-35.
  12. Alamdari DH, Ravari H, Tavallaie S, Fazeli B. Oxidative and antioxidative pathways might contribute to thromboangiitis obliterans pathophysiology. Vascular. 2014;22(1):46-50.
  13. Sharebiani H, Fazeli B, Maniscalco R, Ligi D, Mannello F. The imbalance among oxidative biomarkers and antioxidant defense systems in thromboangiitis obliterans (Winiwarter-Buerger Disease). Journal of Clinical Medicine. 2020;9(4):1036.
  14. Caliri AW, Tommasi S, Besaratinia A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. Mutation Research/Reviews in Mutation Research. 2021;787:108365.
  15. Hussain T, Tan B, Yin Y, Blachier F, Tossou MC, Rahu N. Oxidative stress and inflammation: what polyphenols can do for us? Oxidative medicine and cellular longevity. 2016;2016.
  16. Ramos-González E, Bitzer-Quintero O, Ortiz G, Hernández-Cruz J, Ramírez-Jirano L. Relationship between inflammation and oxidative stress and its effect on multiple sclerosis. Neurología. 2021.
  17. Ioannidou A, Goulielmaki E, Garinis GA. DNA damage: from chronic inflammation to age-related deterioration. Frontiers in genetics. 2016;7:187.
  18. Chen JH, Hales CN, Ozanne SE. DNA damage, cellular senescence and organismal ageing: causal or correlative? Nucleic Acids Res. 2007;35(22):7417-28.
  19. Cui H, Kong Y, Zhang H. Oxidative stress, mitochondrial dysfunction, and aging. J Signal Transduct. 2012;2012:646354.
  20. Acosta JC, O'Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell. 2008;133(6):1006-18.
  21. Kumari R, Jat P. Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Frontiers in cell and developmental biology. 2021;9:645593.
  22. Rentschler M, Braumüller H, Briquez PS, Wieder T. Cytokine-Induced Senescence in the Tumor Microenvironment and Its Effects on Anti-Tumor Immune Responses. Cancers (Basel). 2022;14(6).
  23. Mijit M, Caracciolo V, Melillo A, Amicarelli F, Giordano A. Role of p53 in the Regulation of Cellular Senescence. Biomolecules. 2020;10(3).
  24. Lopes-Paciencia S, Saint-Germain E, Rowell MC, Ruiz AF, Kalegari P, Ferbeyre G. The senescence-associated secretory phenotype and its regulation. Cytokine. 2019;117:15-22.
  25. Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757-72.
  26. Waaijer ME, Goldeck D, Gunn DA, van Heemst D, Westendorp RG, Pawelec G, Maier AB. Are skin senescence and immunosenescence linked within individuals? Aging Cell. 2019;18(4):e12956.
  27. Yu HT, Park S, Shin EC, Lee WW. T cell senescence and cardiovascular diseases. Clin Exp Med. 2016;16(3):257-63.
  28. Youn JC, Jung MK, Yu HT, Kwon JS, Kwak JE, Park SH, et al. Increased frequency of CD4(+)CD57(+) senescent T cells in patients with newly diagnosed acute heart failure: exploring new pathogenic mechanisms with clinical relevance. Sci Rep. 2019;9(1):12887.
  29. Lian J, Yue Y, Yu W, Zhang Y. Immunosenescence: a key player in cancer development. J Hematol Oncol. 2020;13(1):151.
  30. Liberale L, Montecucco F, Tardif JC, Libby P, Camici GG. Inflamm-ageing: the role of inflammation in age-dependent cardiovascular disease. Eur Heart J. 2020;41(31):2974-82.
  31. Wiley CD. Bubble Bubble, Senescent Cells Are a Cauldron of Tumor Trouble. Cancer Res. 2020;80(16):3193-4.
  32. Turner JE, Campbell JP, Edwards KM, Howarth LJ, Pawelec G, Aldred S, et al. Rudimentary signs of immunosenescence in Cytomegalovirus-seropositive healthy young adults. Age. 2014;36(1):287-97.
  33. Lindstrom TM, Robinson WH. Rheumatoid arthritis: a role for immunosenescence? Journal of the American Geriatrics Society. 2010;58(8):1565-75.
  34. Fukushima Y, Minato N, Hattori M. The impact of senescence-associated T cells on immunosenescence and age-related disorders. Inflamm Regen. 2018;38:24.
  35. Xu W, Larbi A. Markers of T Cell Senescence in Humans. Int J Mol Sci. 2017;18(8).
  36. Cerutti A, Schaffer A, Goodwin RG, Shah S, Zan H, Ely S, Casali P. Engagement of CD153 (CD30 ligand) by CD30+ T cells inhibits class switch DNA recombination and antibody production in human IgD+ IgM+ B cells. The Journal of Immunology. 2000;165(2):786-94.
  37. Vinay DS, Kwon BS. Targeting TNF superfamily members for therapeutic intervention in rheumatoid arthritis. Cytokine. 2012;57(3):305-12.
  38. Sun M, Fink PJ. A new class of reverse signaling costimulators belongs to the TNF family. The Journal of Immunology. 2007;179(7):4307-12.
  39. Tahir S, Fukushima Y, Sakamoto K, Sato K, Fujita H, Inoue J, et al. A CD153+CD4+ T follicular cell population with cell-senescence features plays a crucial role in lupus pathogenesis via osteopontin production. J Immunol. 2015;194(12):5725-35.
  40. Yoshida S, Nakagami H, Hayashi H, Ikeda Y, Sun J, Tenma A, et al. The CD153 vaccine is a senotherapeutic option for preventing the accumulation of senescent T cells in mice. Nature communications. 2020;11(1):1-10.
  41. Fukushima Y, Sakamoto K, Matsuda M, Yoshikai Y, Yagita H, Kitamura D, et al. cis interaction of CD153 with TCR/CD3 is crucial for the pathogenic activation of senescence-associated T cells. Cell Reports. 2022;40(12):111373.
  42. Ghamar Talepoor A, Khosropanah S, Doroudchi M. Partial recovery of senescence in circulating follicular helper T cells after Dasatinib treatment. Int Immunopharmacol. 2021;94:107465.
  43. Shirakawa K, Sano M. T Cell Immunosenescence in Aging, Obesity, and Cardiovascular Disease. Cells. 2021;10(9).
  44. Fülöp T, Dupuis G, Witkowski JM, Larbi A. The Role of Immunosenescence in the Development of Age-Related Diseases. Rev Invest Clin. 2016;68(2):84-91.
  45. Martos SN, Campbell MR, Lozoya OA, Bennett BD, Thompson IJ, Wan M, et al. Single-cell analyses identify tobacco smoke exposure-associated, dysfunctional CD16+ CD8 T cells with high cytolytic potential in peripheral blood. bioRxiv. 2019:783126.
  46. Baskara I, Kerbrat S, Dagouassat M, Nguyen HQ, Guillot-Delost M, Surénaud M, et al. Cigarette smoking induces human CCR6+ Th17 lymphocytes senescence and VEGF-A secretion. Scientific reports. 2020;10(1):1-11.
  47. Bellon M, Nicot C. Telomere dynamics in immune senescence and exhaustion triggered by chronic viral infection. Viruses. 2017;9(10):289.
  48. Chen Z, Takahashi M, Naruse T, Nakajima T, Chen Y-W, Inoue Y, et al. Synergistic contribution of CD14 and HLA loci in the susceptibility to Buerger disease. Human genetics. 2007;122(3):367-72.
  49. Chen Z, Nakajima T, Inoue Y, Kudo T, Jibiki M, Iwai T, Kimura A. A single nucleotide polymorphism in the 3′-untranslated region of MyD88 gene is associated with Buerger disease but not with Takayasu arteritis in Japanese. Journal of human genetics. 2011;56(7):545-7.
  50. Ketha SS, Cooper LT. The role of autoimmunity in thromboangiitis obliterans (Buerger's disease). Annals of the New York Academy of Sciences. 2013;1285(1):15-25.
  51. Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature. 2007;449(7164):819-26.
  52. Muralidharan S, Mandrekar P. Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation. Journal of leukocyte biology. 2013;94(6):1167-84.
  53. Iwai T, Inoue Y, Umeda M. Buerger disease, smoking, and periodontitis. Annals of Vascular Diseases. 2008;1(2):80-4.
  54. Farzadnia M, Ravari H, Masoudian M, Valizadeh N, Fazeli B. Unexpected inflammation in the sympathetic ganglia in thromboangiitis obliterans. International Journal of Angiology. 2017;26(04):212-7.
  55. Fazeli B, Ravari H, Ghazvini K. Rickettsia infection could be the missing piece of the Buerger's disease puzzle. International Angiology: a Journal of the International Union of Angiology. 2015;36(5):410-6.
  56. Chung M-H, Lee J-S, Kang J-S. Buerger’s Disease May be a Chronic Rickettsial Infection with Superimposed Thrombosis: Literature Review and Efficacy of Doxycycline in Three Patients. Infection & Chemotherapy. 2022;54(1):20-58.
  57. Prata L, Ovsyannikova IG, Tchkonia T, Kirkland JL. Senescent cell clearance by the immune system: Emerging therapeutic opportunities. Semin Immunol. 2018;40:101275.
  58. Khalil R, Diab-Assaf M, Lemaitre JM. Emerging Therapeutic Approaches to Target the Dark Side of Senescent Cells: New Hopes to Treat Aging as a Disease and to Delay Age-Related Pathologies. Cells. 2023;12(6).
  59. Kale A, Sharma A, Stolzing A, Desprez PY, Campisi J. Role of immune cells in the removal of deleterious senescent cells. Immun Ageing. 2020;17:16.
  60. Wiley SR, Goodwin RG, Smith CA. Reverse signaling via CD30 ligand. J Immunol. 1996;157(8):3635-9.
  61. Fischer M, Harvima IT, Carvalho RF, Möller C, Naukkarinen A, Enblad G, Nilsson G. Mast cell CD30 ligand is upregulated in cutaneous inflammation and mediates degranulation-independent chemokine secretion. J Clin Invest. 2006;116(10):2748-56.
  62. Blazar BR, Levy RB, Mak TW, Panoskaltsis-Mortari A, Muta H, Jones M, et al. CD30/CD30 ligand (CD153) interaction regulates CD4+ T cell-mediated graft-versus-host disease. J Immunol. 2004;173(5):2933-41.
  63. Fazeli B, Rafatpanah H, Ravari H, Farid Hosseini R, Tavakol Afshari J, Hamidi Alamdari D, et al. Sera of patients with thromboangiitis obliterans activated cultured human umbilical vein endothelial cells (HUVECs) and changed their adhesive properties. Int J Rheum Dis. 2014;17(1):106-12.
  64. Litao MK, Kamat D. Erythrocyte sedimentation rate and C-reactive protein: how best to use them in clinical practice. Pediatr Ann. 2014;43(10):417-20.
  65. Assasi N, Blackhouse G, Campbell K, Hopkins RB, Levine M, Richter T, Budden A. CADTH Health Technology Assessments. Comparative Value of Erythrocyte Sedimentation Rate (ESR) and C-Reactive Protein (CRP) Testing in Combination Versus Individually for the Diagnosis of Undifferentiated Patients With Suspected Inflammatory Disease or Serious Infection: A Systematic Review and Economic Analysis. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health