Document Type : Review Article

Authors

1 Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China.

2 Department of Wildlife and Ecology, University of Veterinary and Animals Sciences, Lahore, Pakistan.

3 Department of Zoology, Government College University, Lahore, Pakistan.

4 Department of Fisheries and Aquaculture, University of Veterinary and Animals Sciences, Lahore, Pakistan.

5 Institute of Zoology, University of the Punjab, Lahore, Pakistan.

6 Institute of Chemistry, Faculty of Sciences, University of Sargodha, Pakistan.

7 Department of Zoology, University of Okara, Pakistan.

8 Institute of Molecular Biology and Biotechnology, University of Lahore, Pakistan.

9 Department of Zoology, Lahore College for Women University, Lahore, Pakistan.

Abstract

The most effective method to minimize the prevalence of infectious diseases is vaccination. Vaccines enhance immunity and provide protection against different kinds of infections. Subunit vaccines are safe and less toxic, but due to their lower immunogenicity, they need adjuvants to boost the immune system. Adjuvants are small particles/molecules integrated into a vaccine to enhance the immunogenic feedback of antigens. They play a significant role to enhance the potency and efficiency of vaccines. There are several types of adjuvants with different mechanisms of action; therefore, improved knowledge of their immunogenicity will help develop a new generation of adjuvants. Many trials have been designed using different kinds of vaccine adjuvants to examine their safety and efficacy, but in practice, only a few have entered in animal and human clinical trials. However, for the development of safe and effective vaccines, it is important to have adequate knowledge of the side effects and toxicity of different adjuvants. The current review discussed the adjuvants which are available for producing modern vaccines as well as some new classes of adjuvants in clinical trials.

Keywords

  1. Lee S, Nguyen MT. Recent advances of vaccine adjuvants for infectious diseases. Immune network. 2015;15 (2):51.
  2. Park JY, Kim M-G, Shim G, Oh Y-K. Lipid-based antigen delivery systems. Journal of Pharmaceutical Investigation. 2016;46 (4):295-304.
  3. Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity. 2010;33 (4):492-503.
  4. Awate S, Babiuk LAB, Mutwiri G. Mechanisms of action of adjuvants. Frontiers in immunology. 2013;4:114.
  5. Bowersock TL, Martin S. Vaccine delivery to animals. Advanced drug delivery reviews. 1999;38 (2):167-94.
  6. Cox JC, Coulter AR. Adjuvants a classification and review of their modes of action. Vaccine. 1997;15 (3):248-56.
  7. Gupta RK, Siber GR. Adjuvants for human vaccines current status, problems and future prospects. Vaccine. 1995;13 (14):1263-76.
  8. Gerdts V. Adjuvants for veterinary vaccines types and modes of action. Berl Munch Tierarztl Wochenschr. 2015;128 (11-12):456-63.
  9. Seubert A, Calabro S, Santini L, Galli B, Genovese A, Valentini S, et al. Adjuvanticity of the oil-in-water emulsion MF59 is independent of Nlrp3 inflammasome but requires the adaptor protein MyD88. Proceedings of the national academy of sciences. 2011;108 (27):11169-74.
  10. Spickler AR, Roth JA. Adjuvants in veterinary vaccines: modes of action and adverse effects. Journal of veterinary internal medicine. 2003;17 (3):273-81.
  11. Apostolico JdS, Lunardelli VAS, Coirada FC, Boscardin SB, Rosa DS. Adjuvants: classification, modus operandi, and licensing. Journal of immunology research. 2016;2016.
  12. Marichal T, Ohata K, Bedoret D, Mesnil C, Sabatel C, Kobiyama K, et al. DNA released from dying host cells mediates aluminum adjuvant activity. Nature medicine. 2011;17 (8):996.
  13. Dowling DJ, Levy O. Pediatric vaccine adjuvants: Components of the modern vaccinologist's toolbox. The Pediatric infectious disease journal. 2015;34 (12):1395.
  14. Gershon A, Marin M, Seward J, Plotkin S, Orenstein W, Offit P, et al. 62-Varicella vaccines. Plotkin’s Vaccines 7th ed Philadelphia, PA: Elsevier. 2018:1145-80.
  15. Pasquale AD, Preiss S, Silva FTD, Garçon N. Vaccine adjuvants: from 1920 to 2015 and beyond. Vaccines. 2015;3 (2):320-43.
  16. Janeway Jr C. Cold Spring Harbor Symp. Quant Biol. 1989;54 (1).
  17. Galula JU, Salem GM, Chang G-JJ, Chao D-Y. Does structurally-mature dengue virion matter in vaccine preparation in post-Dengvaxia era? Human vaccines & immunotherapeutics. 2019;15 (10):2328-36.
  18. Guy B. The perfect mix: recent progress in adjuvant research. Nature reviews microbiology. 2007;5 (7):396-7.
  19. Gupta RK, Relyveld EH, Lindblad EB, Bizzini B, Ben-Efraim S, Gupta CK. Adjuvants—a balance between toxicity and adjuvanticity. Vaccine. 1993;11 (3):293-306.
  20. Ramon G. Certain works presented at the Academie Nationale de Medecine (Paris) from 1925 to 1950. Revue d'immunologie et de therapie antimicrobienne. 1959;23:359-401.
  21. Petrovsky N, Aguilar JC. Vaccine adjuvants: current state and future trends. Immunology and cell biology. 2004;82 (5):488-96.
  22. Edelman R. The development and use of vaccine adjuvants. Molecular biotechnology. 2002;21 (2):129-48.
  23. Neumann PJ, Cohen JT, Weinstein MC. Updating cost-effectiveness—the curious resilience of the $50,000-per-QALY threshold. N Engl J Med. 2014;371 (9):796-7.
  24. Burakova Y, Madera R, McVey S, Schlup JR, Shi J. Adjuvants for animal vaccines. Viral immunology. 2018;31 (1):11-22.
  25. Garçon N, Leroux-Roels G, Cheng W: Vaccine adjuvants. Perspect. Vaccinol. 1: 89–113. In.; 2011.
  26. Steven H, Kleinstein P. E., Seiden: Simulating The Immune System. Computing in Science & Engineering. 2000:69-77.
  27. Pashine A, Valiante NM, Ulmer JB. Targeting the innate immune response with improved vaccine adjuvants. Nature medicine. 2005;11 (4):S63-S8.
  28. Schwendener RA. Liposomes as vaccine delivery systems: a review of the recent advances. Therapeutic advances in vaccines. 2014;2( 6):159-82.
  29. Haghparast A, Zakeri A, Ebrahimian M, Ramezani M. Targeting pattern recognition receptors (PRRs) in nano-adjuvants: current perspectives. Current Bionanotechnology (Discontinued). 2016;2 (1):47-59.
  30. Skwarczynski M, Toth I. Peptide-based synthetic vaccines. Chemical science. 2016;7 (2):842-54.
  31. Berzi A, Varga N, Sattin S, Antonazzo P, Biasin M, Cetin I, et al. Pseudo-mannosylated DC-SIGN ligands as potential adjuvants for HIV vaccines. Viruses. 2014;6 (2):391-403.
  32. Lövgren Bengtsson K, Morein B, Osterhaus AD. ISCOM technology-based Matrix M™ adjuvant: success in future vaccines relies on formulation. Expert review of vaccines. 2011;10 (4):401-3.
  33. Cox JC, Coulter AR. Adjuvants-a classification and review of their modes of action. Vaccine. 1997;15 (3):248-56.
  34. Lee J-B, Jang J-E, Song MK, Chang J. Intranasal delivery of cholera toxin induces th17-dominated T-cell response to bystander antigens. PloS one. 2009;4 (4):e5190.
  35. Bungener L, Huckriede A, de Mare A, de Vries-Idema J, Wilschut J, Daemen T. Virosome-mediated delivery of protein antigens in vivo: efficient induction of class I MHC-restricted cytotoxic T lymphocyte activity. Vaccine. 2005;23 (10):1232-41.
  36. Leroux-Roels G. Unmet needs in modern vaccinology: adjuvants to improve the immune response. Vaccine. 2010;28:C25-C36.
  37. Vogel FR. Improving vaccine performance with adjuvants. Clinical Infectious Diseases. 2000;30 (Supplement_3):S266-S70.
  38. O’Hagan DT, De Gregorio E. The path to a successful vaccine adjuvant–‘the long and winding road’. Drug discovery today. 2009;14 (11-12):541-51.
  39. Petrovsky N. Vaccine adjuvant safety: the elephant in the room. Expert review of vaccines. 2013;12 (7):715-7.
  40. Bastola R, Noh G, Keum T, Bashyal S, Seo J-E, Choi J, et al. Vaccine adjuvants: smart components to boost the immune system. Archives of pharmacal research. 2017;40 (11):1238-48.
  41. Caskey M, Lefebvre F, Filali-Mouhim A, Cameron MJ, Goulet J-P, Haddad EK, et al. Synthetic double-stranded RNA induces innate immune responses similar to a live viral vaccine in humans. Journal of experimental medicine. 2011;208 (12):2357-66.
  42. Keech C, Albert G, Cho I, Robertson A, Reed P, Neal S, et al. Phase 1-2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. New england journal of medicine. 2020;383 (24):2320-32.
  43. Garcia A, Lema D. An updated review of ISCOMSTM and ISCOMATRIXTM vaccines. Current pharmaceutical design. 2016;22 (41):6294-9.
  44. Petitdemange C, Kasturi SP, Kozlowski PA, Nabi R, Quarnstrom CF, Reddy PBJ, et al. Vaccine induction of antibodies and tissue-resident CD8+ T cells enhances protection against mucosal SHIV-infection in young macaques. JCI insight. 2019;4 (4).
  45. Wagar LE, Salahudeen A, Constantz CM, Wendel BS, Lyons MM, Mallajosyula V, et al. Modeling human adaptive immune responses with tonsil organoids. Nature medicine. 2021;27 (1):125-35.
  46. Vickers NJ. Animal communication: when i’m calling you, will you answer too? Current biology. 2017;27 (14):R713-R5.
  47. Sykes L, MacIntyre DA, Yap XJ, Ponnampalam S, Teoh TG, Bennett PR. Changes in the Th1: Th2 cytokine bias in pregnancy and the effects of the anti-inflammatory cyclopentenone prostaglandin 15-deoxy-prostaglandin. Mediators of inflammation. 2012;2012.
  48. Petkar KC, Patil SM, Chavhan SS, Kaneko K, Sawant KK, Kunda NK, et al. An overview of nanocarrier-based adjuvants for vaccine delivery. Pharmaceutics. 2021;13 (4):455.
  49. Yang J, Luo Y, Shibu MA, Toth I, Skwarczynskia M. Cell-penetrating peptides: efficient vectors for vaccine delivery. Current drug delivery. 2019;16 (5):430-43.
  50. Baindara P, Chakraborty R, Holliday Z, Mandal S, Schrum A: Oral probiotics in coronavirus disease 2019: Connecting the gut-lung axis to viral pathogenesis, inflammation, secondary infection and clinical trials. In., vol. 40: Elsevier; 2021: 100837.
  51. Song WS, Jeon YJ, Namgung B, Hong M, Yoon S-i. A conserved TLR5 binding and activation hot spot on flagellin. Scientific reports. 2017;7 (1):1-11.
  52. Vijay‐Kumar M, Carvalho FA, Aitken JD, Fifadara NH, Gewirtz AT. TLR5 or NLRC4 is necessary and sufficient for promotion of humoral immunity by flagellin. European journal of immunology. 2010;40 (12):3528-34.
  53. Luchner M, Reinke S, Milicic A. TLR agonists as vaccine adjuvants targeting cancer and infectious diseases. Pharmaceutics. 2021;13 (2):142.
  54. Varshney D, Qiu SY, Graf TP, McHugh KJ. Employing drug delivery strategies to overcome challenges using TLR7/8 agonists for cancer immunotherapy. The AAPS Journal. 2021;23 (4):1-18.
  55. Mehravaran A, Mirahmadi H, Akhtari J. Liposomes containing the imiquimod adjuvant as a vaccine in the cutaneous leishmaniasis model. Nanomedicine Journal. 2020;7(1):29-39.
  56. Rai RC. Host inflammatory responses to intracellular invaders: Review study. Life Sciences. 2020;240:117084.
  57. Wang P: Natural and Synthetic Saponins as Vaccine Adjuvants. Vaccines 2021, 9, 222. In.: s Note: MDPI stays neutral with regard to jurisdictional claims in published …; 2021.
  58. Bonam SR, Partidos CD, Halmuthur SKM, Muller S. An overview of novel adjuvants designed for improving vaccine efficacy. Trends in pharmacological sciences. 2017;38 (9):771-93.
  59. Pulendran B, S Arunachalam P, O’Hagan DT. Emerging concepts in the science of vaccine adjuvants. Nature reviews drug discovery. 2021;20 (6):454-75.
  60. Sailaja AK et al. Role of Vaccine Adjuvant in vaccine development. Journal of pharma science    2016.
  61. Gupta RK, Siber GR. Adjuvants for human vaccines-current status, problems and future prospects. Vaccine. 1995;13 (14):1263-76.
  62. Copland MJ, Rades T, Davies NM, Baird MA. Lipid based particulate formulations for the delivery of antigen. Immunology and cell biology. 2005;83 (2):97-105.
  63. Aguilar J, Rodriguez E. Vaccine adjuvants revisited. Vaccine. 2007;25 (19):3752-62.
  64. Shi S, Zhu H, Xia X, Liang Z, Ma X, Sun B. Vaccine adjuvants: Understanding the structure and mechanism of adjuvanticity. Vaccine. 2019;37 (24):3167-78.
  65. Reimer JM, Karlsson KH, Lövgren-Bengtsson K, Magnusson SE, Fuentes A, Stertman L. Matrix-M™ adjuvant induces local recruitment, activation and maturation of central immune cells in absence of antigen. PloS one. 2012;7 (7):e41451.
  66. Kalams SA, Parker S, Jin X, Elizaga M, Metch B, Wang M, et al. Safety and immunogenicity of an HIV-1 gag DNA vaccine with or without IL-12 and/or IL-15 plasmid cytokine adjuvant in healthy, HIV-1 uninfected adults. PloS one. 2012;7 (1):e29231.
  67. Roestenberg M, Remarque E, De Jonge E, Hermsen R, Blythman H, Leroy O, et al. Safety and immunogenicity of a recombinant Plasmodium falciparum AMA1 malaria vaccine adjuvanted with Alhydrogel™, Montanide ISA 720 or AS02. PloS one. 2008;3 (12):e3960.
  68. Pillet S, Aubin É, Trépanier S, Poulin J-F, Yassine-Diab B, Ter Meulen J, et al. Humoral and cell-mediated immune responses to H5N1 plant-made virus-like particle vaccine are differentially impacted by alum and GLA-SE adjuvants in a Phase 2 clinical trial. NPJ vaccines. 2018;3 (1):1-9.
  69. Joseph A, Itskovitz-Cooper N, Samira S, Flasterstein O, Eliyahu H, Simberg D, et al. A new intranasal influenza vaccine based on a novel polycationic lipid-ceramide carbamoyl-spermine (CCS): I. Immunogenicity and efficacy studies in mice. Vaccine. 2006;24 (18):3990-4006.
  70. Leroux-Roels G. Old and new adjuvants for hepatitis B vaccines. Medical microbiology and immunology. 2015;204 (1):69-78.
  71. Ellis RD, Wu Y, Martin LB, Shaffer D, Miura K, Aebig J, et al. Phase 1 study in malaria naïve adults of BSAM2/Alhydrogel®+ CPG 7909, a blood stage vaccine against P. falciparum malaria. PLoS One. 2012;7 (10):e46094.
  72. Jacobson JM, Zheng L, Wilson CC, Tebas P, Matining RM, Egan MA, et al. The safety and immunogenicity of an interleukin-12-enhanced multiantigen DNA vaccine delivered by electroporation for the treatment of HIV-1 infection. Journal of acquired immune deficiency syndromes (1999). 2016;71 (2):163.
  73. Jin B, Sun T, Yu X-H, Liu C-Q, Yang Y-X, Lu P, et al. Immunomodulatory effects of dsRNA and its potential as vaccine adjuvant. Journal of Biomedicine and Biotechnology. 2010;2010.
  74. Jalah R, Patel V, Kulkarni V, Rosati M, Alicea C, Ganneru B, et al. IL-12 DNA as molecular vaccine adjuvant increases the cytotoxic T cell responses and breadth of humoral immune responses in SIV DNA vaccinated macaques. Human vaccines & immunotherapeutics. 2012;8 (11):1620-9.
  75. Ascarateil S, Puget A, Gaucheron J, Koziol M-E. Sustained release of actives with Montanide™ ISA 51 VG and Montanide™ ISA 720 VG, two adjuvants dedicated to human therapeutic vaccines. Journal for ImmunoTherapy of Cancer. 2015;3 (2):1-2.
  76. Xia S, Zhang Y, Wang Y, Wang H, Yang Y, Gao GF, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. The lancet infectious diseases. 2021;21 (1):39-51.
  77. Vossenaar ER, Radstake TR, van der Heijden A, van Mansum MA, Dieteren C, de Rooij D-J, et al. Expression and activity of citrullinating peptidylarginine deiminase enzymes in monocytes and macrophages. Annals of the rheumatic diseases. 2004;63 (4):373-81.
  78. Keech C, Albert G, Cho I, Robertson A, Reed P, Neal S, et al. Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. New england journal of medicine. 2020;383 (24):2320-32.
  79. Seqirus, News, COVID-19 Update, 2020. https://www.seqirus.com/news/covid 19-update.
  80. Ward, B. J. et al. Phase 1 trial of a candidate recombinant virus-like particle vaccine for covid-19 disease produced in plants. Preprint at medRxiv https://doi.org/10.1101/2020.11.04.20226282 (2020).
  81. Ella R, Vadrevu KM, Jogdand H, Prasad S, Reddy S, Sarangi V, et al. A phase 1: safety and immunogenicity trial of an inactivated SARS-CoV-2 vaccine-BBV152. MedRxiv. 2020.