Document Type : Review Article
Authors
Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran.
Abstract
Cell-mediated immunity (CMI) is crucial in controlling the highly aggressive and progressive SARS-CoV-2 infection. Despite extensive researches on severe COVID-19 infection, the etiology and/or mechanisms of lymphopenia, decreased T cell-mediated responses in patients, cytokine release storms (CRS), and enhanced pro-inflammatory mediators are not fully understood. Several T cell subpopulations, including innate-like lymphocytes (ILLs) and conventional T cells, are involved in COVID-19 infection; however, their contribution to immunity and complications remains to be more elucidated. CD16+ T cells are among the effective players in the development of T helper1 (Th1) responses in COVID-19 infection, while their robust cytolytic properties contribute to lung tissue damage. While CD56-CD16bright NK cells play a protective role, natural killer T (NKT) cells, mucosal-associated invariant T (MAIT) cells, and γδ T cells and their roles in COVID-19 require further investigation. The involvement of the other T cell subsets, such as Th17, along with neutrophils, adds to the complexity of the situation. In this review, we presented and discussed the findings of recent studies on T cell responses and the contribution of each type of immune cells to COVID-19.
Keywords
- Samudrala PK, Kumar P, Choudhary K, Thakur N, Wadekar GS, Dayaramani R, et al. Virology, pathogenesis, diagnosis and in-line treatment of COVID-19. Eur J Pharmacol. 2020;883:173375.
- Roberts S, Girardi M. Conventional and Unconventional T Cells. In: Gaspari AA, Tyring SK, editors. Clinical and Basic Immunodermatology. London: Springer London; 2008. p. 85-104.
- Cevik M, Kuppalli K, Kindrachuk J, Peiris M. Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ. 2020;371:m3862.
- Arshad N, Laurent-Rolle M, Ahmed WS, Hsu JC, Mitchell SM, Pawlak J, et al. SARS-CoV-2 accessory proteins ORF7a and ORF3a use distinct mechanisms to downregulate MHC-I surface expression. bioRxiv : the preprint server for biology. 2022.
- Gil-Etayo FJ, Suàrez-Fernández P, Cabrera-Marante O, Arroyo D, Garcinuño S, Naranjo L, et al. T-Helper Cell Subset Response Is a Determining Factor in COVID-19 Progression. Frontiers in cellular and infection microbiology. 2021;11:624483.
- Flower TG, Buffalo CZ, Hooy RM, Allaire M, Ren X, Hurley JH. Structure of SARS-CoV-2 ORF8, a rapidly evolving immune evasion protein. Proceedings of the National Academy of Sciences of the United States of America. 2021;118(2).
- Agerer B, Koblischke M, Gudipati V, Montano-Gutierrez LF, Smyth M, Popa A, et al. SARS-CoV-2 mutations in MHC-I-restricted epitopes evade CD8(+) T cell responses. Sci Immunol. 2021;6(57).
- Stanevich OV, Alekseeva EI, Sergeeva M, Fadeev AV, Komissarova KS, Ivanova AA, et al. SARS-CoV-2 escape from cytotoxic T cells during long-term COVID-19. Nature Communications. 2023;14(1):149.
- Georg P, Astaburuaga-García R, Bonaguro L, Brumhard S, Michalick L, Lippert LJ, et al. Complement activation induces excessive T cell cytotoxicity in severe COVID-19. Cell. 2022;185(3):493-512.e25.
- Wu X, Wu P, Shen Y, Jiang X, Xu F. CD8(+) Resident Memory T Cells and Viral Infection. Frontiers in immunology. 2018;9:2093.
- De Biasi S, Meschiari M, Gibellini L, Bellinazzi C, Borella R, Fidanza L, et al. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat Commun. 2020;11(1):3434.
- Zhao Q, Meng M, Kumar R, Wu Y, Huang J, Deng Y, et al. Lymphopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A systemic review and meta-analysis. Int J Infect Dis. 2020;96:131-5.
- Yoshida M, Worlock KB, Huang N, Lindeboom RGH, Butler CR, Kumasaka N, et al. Local and systemic responses to SARS-CoV-2 infection in children and adults. Nature. 2022;602(7896):321-7.
- Yang J, Zhang E, Zhong M, Yang Q, Hong K, Shu T, et al. 2020.
- Boettler T, Csernalabics B, Salie H, Luxenburger H, Wischer L, Salimi Alizei E, et al. SARS-CoV-2 vaccination can elicit a CD8 T-cell dominant hepatitis. J Hepatol. 2022;77(3):653-9.
- Rupp J, Dreo B, Gutl K, Fessler J, Moser A, Haditsch B, et al. T Cell Phenotyping in Individuals Hospitalized with COVID-19. J Immunol. 2021;206(7):1478-82.
- Dongling Wu1 XZ, Yonah Ziemba1 , Nina Haghi2, Judith Brody1* and Peihong Hsu1. Dynamics of Peripheral Blood T-lymphocytes Have Predictive Values for the Clinical Outcome of COVID-19 Patients in Intensive Care Unit. Clinical Pathology. December 14, 2021.
- Al-Mterin MA, Alsalman A, Elkord E. Inhibitory Immune Checkpoint Receptors and Ligands as Prognostic Biomarkers in COVID-19 Patients. Frontiers in immunology. 2022;13.
- Zhou X, Ye G, Lv Y, Guo Y, Pan X, Li Y, et al. IL-6 drives T cell death to participate in lymphopenia in COVID-19. Int Immunopharmacol. 2022;111:109132.
- Elahi R, Karami P, Heidary AH, Esmaeilzadeh A. An updated overview of recent advances, challenges, and clinical considerations of IL-6 signaling blockade in severe coronavirus disease 2019 (COVID-19). Int Immunopharmacol. 2022;105:108536.
- Paludan SR, Mogensen TH. Innate immunological pathways in COVID-19 pathogenesis. Sci Immunol. 2022;7(67):eabm5505.
- Osterdahl MF, Christakou E, Hart D, Harris F, Shahrabi Y, Pollock E, et al. Concordance of B- and T-cell responses to SARS-CoV-2 infection, irrespective of symptoms suggestive of COVID-19. J Med Virol. 2022;94(11):5217-24.
- Li Q, Wang Y, Sun Q, Knopf J, Herrmann M, Lin L, et al. Immune response in COVID-19: what is next? Cell death and differentiation. 2022;29(6):1107-22.
- Sadeghi A, Tahmasebi S, Mahmood A, Kuznetsova M, Valizadeh H, Taghizadieh A, et al. Th17 and Treg cells function in SARS-CoV2 patients compared with healthy controls. J Cell Physiol. 2021;236(4):2829-39.
- Parackova Z, Bloomfield M, Klocperk A, Sediva A. Neutrophils mediate Th17 promotion in COVID-19 patients. J Leukoc Biol. 2021;109(1):73-6.
- Sharif-Askari FS, Sharif-Askari NS, Hafezi S, Mdkhana B, Alsayed HAH, Ansari AW, et al. Interleukin-17, a salivary biomarker for COVID-19 severity. PloS one. 2022;17(9):e0274841.
- Gupta G, Shareef I, Tomar S, Kumar MSN, Pandey S, Sarda R, et al. Th1/Th2/Th17 Cytokine Profile among Different Stages of COVID-19 Infection. National Academy science letters National Academy of Sciences, India. 2022;45(4):363-9.
- Wu D, Yang XO. TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib. J Microbiol Immunol Infect. 2020;53(3):368-70.
- Shahbazi M, Jafari M, Moulana Z, Sepidarkish M, Bagherzadeh M, Rezanejad M, et al. Reduced frequency of T helper 17 and T helper 1 cells and their association with critical coronavirus disease 2019. Apmis. 2021;129(5):271-9.
- Tahmasebi S, El-Esawi MA, Mahmoud ZH, Timoshin A, Valizadeh H, Roshangar L, et al. Immunomodulatory effects of nanocurcumin on Th17 cell responses in mild and severe COVID-19 patients. J Cell Physiol. 2021;236(7):5325-38.
- Vatsalya V, Li F, Frimodig JC, Gala KS, Srivastava S, Kong M, et al. Therapeutic Prospects for Th-17 Cell Immune Storm Syndrome and Neurological Symptoms in COVID-19: Thiamine Efficacy and Safety, In-vitro Evidence and Pharmacokinetic Profile. medRxiv. 2020.
- Khesht AMS, Karpisheh V, Saeed BQ, Zekiy AO, Yapanto LM, Afjadi MN, et al. Different T cell related immunological profiles in COVID-19 patients compared to healthy controls. International Immunopharmacology. 2021;97:107828.
- Wu D, Yang XO. Dysregulation of Pulmonary Responses in Severe COVID-19. Viruses. 2021;13(6):957.
- Gutiérrez-Bautista JF, Rodriguez-Nicolas A, Rosales-Castillo A, Jiménez P, Garrido F, Anderson P, et al. Negative clinical evolution in COVID-19 patients is frequently accompanied with an increased proportion of undifferentiated th cells and a strong underrepresentation of the Th1 subset. Frontiers in immunology. 2020;11:596553.
- Cagan E, Tezcan G, Simsek A, Kizmaz MA, Dombaz F, Asan A, et al. The age-dependent role of th22, tc22, and tc17 cells in the severity of pneumonia in covid-19 immunopathogenesis. Viral immunology. 2022;35(4):318-27.
- Ryan FJ, Hope CM, Masavuli MG, Lynn MA, Mekonnen ZA, Yeow AEL, et al. Long-term perturbation of the peripheral immune system months after SARS-CoV-2 infection. BMC medicine. 2022;20(1):26.
- Zhang K, Chen L, Zhu C, Zhang M, Liang C. Current Knowledge of Th22 Cell and IL-22 Functions in Infectious Diseases. Pathogens. 2023;12(2):176.
- Zhang K, Chen L, Zhu C, Zhang M, Liang C. Current Knowledge of Th22 Cell and IL-22 Functions in Infectious Diseases. Pathogens (Basel, Switzerland). 2023;12(2).
- Stassen M, Schmitt E, Bopp T. From interleukin-9 to T helper 9 cells. Annals of the New York Academy of Sciences. 2012;1247:56-68.
- Godfrey DI, Hammond KJ, Poulton LD, Smyth MJ, Baxter AG. NKT cells: facts, functions and fallacies. Immunol Today. 2000;21(11):573-83.
- Lo Presti E, De Gaetano A, Pioggia G, Gangemi S. Comprehensive Analysis of the ILCs and Unconventional T Cells in Virus Infection: Profiling and Dynamics Associated with COVID-19 Disease for a Future Monitoring System and Therapeutic Opportunities. Cells. 2022;11(3):542.
- Kim DM, Seo JW, Kim Y, Park U, Ha NY, Park H, et al. Eosinophil-mediated lung inflammation associated with elevated natural killer T cell response in COVID-19 patients. Korean J Intern Med. 2022;37(1):201-9.
- Zingaropoli MA, Perri V, Pasculli P, Cogliati Dezza F, Nijhawan P, Savelloni G, et al. Major reduction of NKT cells in patients with severe COVID-19 pneumonia. Clin Immunol. 2021;222:108630.
- Mahmoud Salehi Khesht A, Karpisheh V, Qubais Saeed B, Olegovna Zekiy A, Yapanto LM, Nabi Afjadi M, et al. Different T cell related immunological profiles in COVID-19 patients compared to healthy controls. Int Immunopharmacol. 2021;97:107828.
- Zhang JY, Wang XM, Xing X, Xu Z, Zhang C, Song JW, et al. Single-cell landscape of immunological responses in patients with COVID-19. Nat Immunol. 2020;21(9):1107-18.
- Mazzoni A, Salvati L, Maggi L, Capone M, Vanni A, Spinicci M, et al. Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent. The Journal of clinical investigation. 2020;130(9):4694-703.
- Koay HF, Gherardin NA, Nguyen THO, Zhang W, Habel JR, Seneviratna R, et al. Are NKT cells a useful predictor of COVID-19 severity? Immunity. 2022;55(2):185-7.
- Saresella M, Trabattoni D, Marventano I, Piancone F, La Rosa F, Caronni A, et al. NK Cell Subpopulations and Receptor Expression in Recovering SARS-CoV-2 Infection. Mol Neurobiol. 2021;58(12):6111-20.
- Piersma SJ, Brizic I. Natural killer cell effector functions in antiviral defense. FEBS J. 2022;289(14):3982-99.
- Bjorkstrom NK, Ponzetta A. Natural killer cells and unconventional T cells in COVID-19. Curr Opin Virol. 2021;49:176-82.
- Bergantini L, d'Alessandro M, Cameli P, Cavallaro D, Gangi S, Cekorja B, et al. NK and T Cell Immunological Signatures in Hospitalized Patients with COVID-19. Cells. 2021;10(11).
- Vietzen H, Zoufaly A, Traugott M, Aberle J, Aberle S, Puchhammer-Stöckl E. NK cell receptor NKG2C deletion and HLA-E variants are risk factors for severe COVID-19. 2020.
- Toor SM, Saleh R, Sasidharan Nair V, Taha RZ, Elkord E. T-cell responses and therapies against SARS-CoV-2 infection. Immunology. 2021;162(1):30-43.
- Tomić S, Đokić J, Stevanović D, Ilić N, Gruden-Movsesijan A, Dinić M, et al. Reduced expression of autophagy markers and expansion of myeloid-derived suppressor cells correlate with poor T cell response in severe COVID-19 patients. Frontiers in immunology. 2021;12:614599.
- Nielsen MM, Witherden DA, Havran WL. gammadelta T cells in homeostasis and host defence of epithelial barrier tissues. Nat Rev Immunol. 2017;17(12):733-45.
- Caron J, Ridgley LA, Bodman-Smith M. How to Train Your Dragon: Harnessing Gamma Delta T Cells Antiviral Functions and Trained Immunity in a Pandemic Era. Frontiers in immunology. 2021;12:666983.
- Minton K. Unconventional T cells shape tissue-specific lymph node responses. Nat Rev Immunol. 2022;22(10):594-5.
- Xiong N, Raulet DH. Development and selection of γδ T cells. Immunological reviews. 2007;215(1):15-31.
- Pauza CD, Poonia B, Li H, Cairo C, Chaudhry S. gammadelta T Cells in HIV Disease: Past, Present, and Future. Frontiers in immunology. 2014;5:687.
- Poccia F, Agrati C, Martini F, Capobianchi MR, Wallace M, Malkovsky M. Antiviral reactivities of γδ T cells. Microbes and infection. 2005;7(3):518-28.
- Cimini E, Agrati C. gammadelta T Cells in Emerging Viral Infection: An Overview. Viruses. 2022;14(6):1166.
- Yazdanifar M, Mashkour N, Bertaina A. Making a case for using γδ T cells against SARS-CoV-2. Critical Reviews in Microbiology. 2020;46(6):689-702.
- Di Simone M, Corsale AM, Lo Presti E, Scichilone N, Picone C, Giannitrapani L, et al. Phenotypical and Functional Alteration of γδ T Lymphocytes in COVID-19 Patients: Reversal by Statins. Cells. 2022;11(21):3449.
- Jouan Y, Guillon A, Gonzalez L, Perez Y, Boisseau C, Ehrmann S, et al. Phenotypical and functional alteration of unconventional T cells in severe COVID-19 patients. J Exp Med. 2020;217(12).
- Del Bello A, Kamar N, Vergez F, Faguer S, Marion O, Beq A, et al. Adaptive lymphocyte profile analysis discriminates mild and severe forms of COVID-19 after solid organ transplantation. Kidney Int. 2021;100(4):915-27.
- Gay L, Rouviere M-S, Mezouar S, Richaud M, Gorvel L, Foucher E, et al. Vγ9Vδ2 T cells are potent inhibitors of SARS-CoV-2 replication and exert effector phenotypes in COVID-19 patients. bioRxiv : the preprint server for biology. 2022:2022.04.15.487518.
- Rijkers G, Vervenne T, van der Pol P. More bricks in the wall against SARS-CoV-2 infection: involvement of gamma9delta2 T cells. Cell Mol Immunol. 2020;17(7):771-2.
- Carissimo G, Xu W, Kwok I, Abdad MY, Chan YH, Fong SW, et al. Whole blood immunophenotyping uncovers immature neutrophil-to-VD2 T-cell ratio as an early marker for severe COVID-19. Nat Commun. 2020;11(1):5243.
- Cerapio JP, Perrier M, Pont F, Tosolini M, Laurent C, Bertani S, et al. Single-Cell RNAseq Profiling of Human gammadelta T Lymphocytes in Virus-Related Cancers and COVID-19 Disease. Viruses. 2021;13(11).
- Schonrich G, Raftery MJ, Samstag Y. Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. Advances in biological regulation. 2020;77:100741.
- Mukund K, Nayak P, Ashokkumar C, Rao S, Almeda J, Betancourt-Garcia MM, et al. Immune Response in Severe and Non-Severe Coronavirus Disease 2019 (COVID-19) Infection: A Mechanistic Landscape. Frontiers in immunology. 2021;12:738073.
- Odak I, Barros-Martins J, Bosnjak B, Stahl K, David S, Wiesner O, et al. Reappearance of effector T cells is associated with recovery from COVID-19. EBioMedicine. 2020;57:102885.
- Lei L, Qian H, Yang X, Zhang X, Zhang D, Dai T, et al. The phenotypic changes of gammadelta T cells in COVID-19 patients. J Cell Mol Med. 2020;24(19):11603-6.
- Chen XJ, Li K, Xu L, Yu YJ, Wu B, He YL, et al. Novel insight from the first lung transplant of a COVID-19 patient. Eur J Clin Invest. 2021;51(1):e13443.
- von Massow G, Oh S, Lam A, Gustafsson K. Gamma Delta T Cells and Their Involvement in COVID-19 Virus Infections. Frontiers in immunology. 2021;12:741218.
- Wang H, Wang Z, Cao W, Wu Q, Yuan Y, Zhang X. Regulatory T cells in COVID-19. Aging Dis. 2021;12(7):1545-53.
- El-Badawy O, Elsherbiny NM, Abdeltawab D, Magdy DM, Bakkar LM, Hassan SA, et al. COVID-19 Infection in Patients with Comorbidities: Clinical and Immunological Insight. Clin Appl Thromb Hemost. 2022;28:10760296221107889.
- Zahran AM, Abdel-Rahim MH, Nasif KA, Hussein S, Hafez R, Ahmad AB, et al. Association of follicular helper T and follicular regulatory T cells with severity and hyperglycemia in hospitalized COVID-19 patients. Virulence. 2022;13(1):569-77.
- Muyayalo KP, Huang DH, Zhao SJ, Xie T, Mor G, Liao AH. COVID-19 and Treg/Th17 imbalance: Potential relationship to pregnancy outcomes. American journal of reproductive immunology (New York, NY : 1989). 2020;84(5):e13304.
- Russo C, Raiden S, Algieri S, De Carli N, Davenport C, Sarli M, et al. Extracellular ATP and Imbalance of CD4+ T Cell Compartment in Pediatric COVID-19. Frontiers in cellular and infection microbiology. 2022;12:893044.
- Neumann J, Prezzemolo T, Vanderbeke L, Roca CP, Gerbaux M, Janssens S, et al. Increased IL-10-producing regulatory T cells are characteristic of severe cases of COVID-19. Clin Transl Immunology. 2020;9(11):e1204.
- Wang F, Hou H, Luo Y, Tang G, Wu S, Huang M, et al. The laboratory tests and host immunity of COVID-19 patients with different severity of illness. JCI Insight. 2020;5(10).
- Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71(15):762-8.
- Di Sante G, Buonsenso D, De Rose C, Tredicine M, Palucci I, De Maio F, et al. Immunopathology of SARS-CoV-2 Infection: A Focus on T Regulatory and B Cell Responses in Children Compared with Adults. Children (Basel). 2022;9(5).
- Gupta S, Su H, Narsai T, Agrawal S. SARS-CoV-2-Associated T-Cell Responses in the Presence of Humoral Immunodeficiency. Int Arch Allergy Immunol. 2021;182(3):195-209.
- Hsieh LE, Grifoni A, Dave H, Wang J, Johnson D, Zellner J, et al. SARS-CoV-2-specific T cell responses and immune regulation in infected pregnant women. J Reprod Immunol. 2022;149:103464.
- Shi J, Zhou J, Zhang X, Hu W, Zhao JF, Wang S, et al. Single-Cell Transcriptomic Profiling of MAIT Cells in Patients With COVID-19. Frontiers in immunology. 2021;12:700152.
- Hinks TSC, Zhang XW. MAIT Cell Activation and Functions. Frontiers in immunology. 2020;11:1014.
- Deschler S, Kager J, Erber J, Fricke L, Koyumdzhieva P, Georgieva A, et al. Mucosal-Associated Invariant T (MAIT) Cells Are Highly Activated and Functionally Impaired in COVID-19 Patients. Viruses. 2021;13(2):241.
- Parrot T, Gorin JB, Ponzetta A, Maleki KT, Kammann T, Emgard J, et al. MAIT cell activation and dynamics associated with COVID-19 disease severity. Sci Immunol. 2020;5(51).
- Flament H, Rouland M, Beaudoin L, Toubal A, Bertrand L, Lebourgeois S, et al. Outcome of SARS-CoV-2 infection is linked to MAIT cell activation and cytotoxicity. Nature Immunology. 2021;22(3):322-35.
- van Wilgenburg B, Scherwitzl I, Hutchinson EC, Leng T, Kurioka A, Kulicke C, et al. MAIT cells are activated during human viral infections. Nat Commun. 2016;7(1):11653.
- Akasov RA, Khaydukov EV. Mucosal-associated invariant T cells as a possible target to suppress secondary infections at COVID-19. Frontiers in immunology. 2020;11:1896.
- Nielsen SS, Vibholm LK, Monrad I, Olesen R, Frattari GS, Pahus MH, et al. SARS-CoV-2 elicits robust adaptive immune responses regardless of disease severity. EBioMedicine. 2021;68:103410.
- Imeneo A, Alessio G, Di Lorenzo A, Campogiani L, Lodi A, Barreca F, et al. In Patients with Severe COVID-19, the Profound Decrease in the Peripheral Blood T-Cell Subsets Is Correlated with an Increase of QuantiFERON-TB Gold Plus Indeterminate Rates and Reflecting a Reduced Interferon-Gamma Production. Life (Basel). 2022;12(2).
- Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620-9.
- Meckiff BJ, Ramirez-Suastegui C, Fajardo V, Chee SJ, Kusnadi A, Simon H, et al. Imbalance of Regulatory and Cytotoxic SARS-CoV-2-Reactive CD4(+) T Cells in COVID-19. Cell. 2020;183(5):1340-53 e16.
- Simsek A, Kizmaz MA, Cagan E, Dombaz F, Tezcan G, Asan A, et al. Assessment of CD39 expression in regulatory T-cell subsets by disease severity in adult and juvenile COVID-19 cases. J Med Virol. 2022;94(5):2089-101.
- Scharf RE, Anaya J-M. Post-COVID Syndrome in Adults—An Overview. Viruses. 2023;15(3):675.
- Fenoglio D, Dentone C, Parodi A, Di Biagio A, Bozzano F, Vena A, et al. Characterization of T lymphocytes in severe COVID‐19 patients. Journal of medical virology. 2021;93(9):5608-13.