Document Type : Review Article
Authors
1 Department of Clinical Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
2 Wangjiang Subdistrict Community Healthcare Center, Shangcheng District, Hangzhou, China.
3 Department of Pediatrics, No.903 Hospital of PLA Joint Logistic Support Force, Xi Hu Affiliated Hospital of Hangzhou Medical College, Hangzhou, China.
Abstract
The balance between follicular helper T cells (Tfh) and follicular regulatory T cells (Tfr) is crucial for maintaining immune tolerance. Tfh cells are key in producing autoantibodies by providing essential help to germinal center (GC) B cells, while Tfr cells prevent autoimmune inflammatory processes by controling Tfh responses. However, the signals that regulate Tfh and Tfr cells are largely unknown. Due to dysregulated Tfr/Tfh balance and autoantibody production, regulatory B cells (Bregs) have emerged as a key checkpoint in the GC response. Bregs are B cells with immunosuppressive capabilities. Significant advancements have been made in understanding the roles of Bregs, particularly their capacity to produce cytokines with anti-inflammatory properties and regulate Th17, Th1, and regulatory T cells (Tregs) in the context of autoimmune conditions. Bregs also play a pivotal role in shaping the development, regulation, and localization of Tfh and Tfr cells within the immune environment. Consequently, gaining mechanistic knowledge about the interactions between Tfh-Bregs and Tfr-Bregs has the potential to establish homeostasis and suppress the development of autoantibodies in a various disorders. Within the context of autoimmune disorders, this article provides a concise summary of the dysregulation of Tfh/Tfr, highlighting the critical role of Bregs in regulating this balance. The previously unrecognized interplay between Bregs and Tfh/Tfr cells will serve as an essential basis for the comprehension and management of autoimmune illnesses. It also promises to offer invaluable knowledge of the biological mechanisms of autoantibody synthesis.
Keywords